Геометрическая правильность, дискретность, периодичность расположения зон систем тектонических нарушений, указывает на симметрию системы Земли. Вдоль глубинных разломов располагаются генетически с ними связанные ослабленные резонансно-тектонические структуры, - вместилища минералного сырья.
Данное обстоятельство, дает возможность широкого применения метода аналогии в геологии. Метод геометризации геопроцесса, - очень надежен и точен, так как действует космогенический фактор, который ответственен за закономерности расположения объектов космоса, а значит и структурных элементов этих объектов (расположение СЭЦ, разломов, месторождений), в системе Земли
- «Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции» (И. Пригожин).
То-есть, процесс формирования минерального сырья, - антиэнтропийный. Открытая система формируется благодаря иерархии тектонических нарушений. Таким образом, зоны систем тектонических нарушений, есть главный фактор под воздействием которого формируются месторождения минерального сырья.
Происхождение нефти:
«… Циркулировали нагретые нефтяные и приповерхностные воды. Ими в осадочных формациях молодых мезозойских и кайнозойских покровов дополнительно переоткладывались и концентрировались газ, нефть, сера, стронций, руды цветных металлов, ряд редких и рассеянных элементов» (В.И. Попов, 1976) [5].
Формирование месторождений углеводородов происходит течении всего геологического времени.
Наиболее древние месторождения, - углеводороды, в связи с тем, что они образованы из легко летучих элементов и углерода. Контролируются месторождения УВ разгломами первичного заложения.
«Среднее содержание углерода в земной коре, по А.Е. Ферсману, равно 0,35% (1939). Оно определено на основании многочисленных анализов горных пород, природных вод и воздуха. Понятно, что подобные подсчеты далеко не точны, и данные разных авторов значительно расходятся. Все же порядок величин, как общего содержания углерода, так и его распределения в разных зонах земной коры, повидимому, верен» (В.И. Вернадский).
Закономерное расположение структурных элементов в пространстве системы Земли.
В силу того, что разломы являются первичными структурами, они располагаются линейно и имеют сквозной характер по отношению к другим тектоническим структурам, что позволяет успешно применять различные способы геометризации для целей прогнозирования.
В работе однозначно доказано обоснованность применения закона И. Пригожина (1947) и принципов нелинейной термодинамики Пригожина, а также принципа симметрии П. Кюри в геологии.
В работе показано:
- рельеф системы Земли, есть отражение тектонических процессов происходящих в ее недрах и не требует никакого доказательства, так-как все процессы и явления происходящие в природе всегда истинны;
- изучение закономерностей расположения структурных элементов рельефа, дает возможность оперативного прогнозирования, даже на начальных стадиях ГРР;
- геоморфологический метод исследования очень точен и не требует больших затрат;
- линейные структур ы необходимо изучать выбирая ортогональные проекции;
- линейные структуры закономерно ориентированы;
- ориентировка линейных структур планеты, - рифтовых зон океанов и материков, отражает единый план деформации как для материков, так и для океанов с архея до квартера;
- сеть линейных структур планеты, -едина;
- разломы контролируют подвижные пояса планеты и имеют сквозной характер;
- линеаменты контролируют материки и континенты и пересекаюся под углом 900 и 450 ;
- гидрографическая сеть маркирует разломы;
- линеаменты опоясывают планету (четыре направления), носят сквозной характер, контролируют геологические процессы происходящие в тектоносфере и ядре;
- процессы деструкции земной коры, произошли в следствии возникновения избыточного давления флюида со стороны мантии;
- «Не надо забывать, что вода, выделяемая при плавлении и нагревании горных пород и часть воды магмы происходят благодаря распадению соединений — алюмосиликатов и силикатов, тех же резорбируемых пород» (В.И. Вернадский, 1934). .
- деструкции земной коры способствовали эпейрогенические колебание литосферы;
- под воздействием эпейрогенических колебаний литосферы, ослабленные деструкцией блоки земной коры дифференциироанно испытали погружение (по радиали), что привело к образованию океанов и морей;
- впадины океанов существуют с архея, о чем свидетельствуют мощности земной коры области впадин;
- месторождения УВ, связаны с первичными разломами;
- линеаменты, корни гор, континентов, глобальные гравитационные и магнитные аномалии, - свидетельствуют о активных коро-мантийных обменных процессах происходящих в системе Земли;
- вышеизложенное опровергает гипотезы дрейфа континентов и литосферных плит;
- автоколебательная система Земли имеет блоковое строение.
ии водорода.
Можно считать доказанным следующее (графо-статистический анализ первичных структур):
В начале 20-го века В. Гоббс указывал на многочисленные примеры «геометрической структурированности» рельефа земной поверхности, в котором преобладают прямолинейные направления. В 30-х годах 20-го века Р. Зондер высказал предположение о наличие в Земной коре сети первичных разломов, проявляющихся в виде «линеаментов» - прямолинейных структур и форм рельефа.
Первичные структуры пересекаются под углом 90 и 45 градуса.
«Основной чертой строения земной коры является то, что это единственная область планеты, где существуют и могут проявляться, всем нам известные — и определяющие жизнь и окружающую ее среду — физические состояния материи:
- твердое, жидкое и газообразное.
Это единственная область планеты, где они все могут существовать. Этот признак правильно принять за исходный, для выделения области геосфер, так как возможно, что нет того совпадения области земной коры с границей изостатической поверхности, которая часто берется как нижняя граница земной коры.
Уже на 60 км вниз от уровня геоида под сушей давление достигает примерно 30 тыс. ат/см2 , при котором исчезает различие между твердым (кристаллическим), жидким и газообразным состояниями» (В.И. Вернадский, 1934). .
С.П. Максимов, 1977, показал связь тектонических циклов и процессом накопления нефти и газа - тектоническая цикличность оказывает влияние на миграцию УВ. Тектоническая обстановка является фактором контролирующим пути направления и скорость миграции УВ.
В.Е. Хаину, «одной из важнейших особенностей протекания разномасштабных геопроцессов, являются их цикличность, происходившая на фоне их направленного развития»
Цикличность формирования месторождений гранитных пегматитов в геологической истории Земли, удалось выявить Ткачеву А.В.:«Было установлено, что «абсолютные максимумы интенсивности попадают в следующие интервалы (млрд лет): 2,65-2,60; 1,90-1,85; 1,00-0,95; 0,55-0,50 и 0,30-0,25. Если исключить интервал 0,55-0,05, то остальные находятся на расстоянии 0,8+_0,1 млрд лет, то есть формируют квазирегулярную цикличность. С другой стороны, выпавший из этой последовательности пик 0,55-0,50 вместе с более слабыми пиками второго порядка образуют еще один ряд: 1,2-1,15; 2,1-2,05 и 2,85-2,8. совпадают с завершающими фазами импульсов самого интенсивного роста ювенильной континентальной коры в истории Земли. Процесс происходил волнообразно».
Временной разрыв между процессом структурированием тектоносферы волной энергии и гидротермальным массопотоком, становлением гранитоидных массивов, составляет около 50 млн. лет. Данный процесс, характеризуется как направленно-циклический (волнообразный).
«Выделяются горообразовательные геохимические эпохи формирования и локализации минерального сырья и разделяющие их равнинообразовательные» (В.И. Попов) [7].
Корреляция процессов рудообразования с проявлением эпох пенепленизаций, отражает наличие единого волнового механизма структурообразования и рудообразования; единство глобального и регионального, а также и циклический характер их проявления в истории системы Земли. Процесс миграции вещества, происходит как в сторону ядра, так и наоборот, то-есть он имеет разнонаправленный характер. Данное положение является основополагающим в понимании процесса рудообразования и генезиса минералогических ассоциаций.
Вещество мигрируя из одной формации в другую, подвергается преобразованию на атомарном уровне, приобретая новые качества и свойства. Физико-химические деформации генетически связаны с взаимодействующими полями напряжений, возникновение которых связано с энергетикой питающих систем более высокой организации.
Вдоль глубинных разломов, располагаются генетически с ними резонансно-тектонические структуры, - вместилиша минерального сырья.
Элементный состав нефти: С 82,5-87%; Н 11,5-14,5%; О 0,05-0,35, редко до 0,7%; S 0,001-5,5%, редко свыше 8%; N 0,02-1,8%. Около 1/3 всей добываемой в мире нефти содержит свыше 1% S.
Средняя величина Corg в стратиграфическом разрезе (нефть+газ) мира: Corg=5%, проанализированы n=50 свит от палеопротерозоя до квартера.
Т.о.: 87 — 5 = 82% С, - абиогенного углерода
Углеводороды комплементарны друг другу.
При метаморфизме увеличивается доля С и падает доля Н и гетероэлементов.
1934 год: содержание углерода в углеводородах С = 83-87%;
- водорода Н = 11-14%.
Насыщение нефти кислородом атмосферы: содержание кислорода до 6%.
2021 год: э
- лементный состав нефти: С 82,5-87%; Н 11,5-14,5%;
Насыщение нефти кислородом атмосферы:
О 0,05-0,35.
Цифровые данные указывают на глубинное происхождение УВ.
Элементный состав нефти: С 82,5-87%; Н 11,5-14,5%; О 0,05-0,35, редко до 0,7%; S 0,001-5,5%, редко свыше 8%; N 0,02-1,8%. Около 1/3 всей добываемой в мире нефти содержит свыше 1% S.
Средняя величина Corg в стратиграфическом разрезе мира: Corg=5%, проанализированы n=50 свит от палеопротерозоя до квартера..
Таким образом, в нефти заключено 77.5-82.5% углерода абиогенного происхождения (не связанного генетически с биосферой).
Среднее значение: HI = 361.5.
Среднее значение:(S1+S2) = 1.39.
K = (S1 + S2)/НI) * 100% = 0.4%.
То-есть, величина (99.6%) указывает на то, что огромные массы минерального сырья, были сформированы за счет индекса HI, глубоких сфер земной коры системы Земли. Формирование месторождений с большими запасами углеводородов, происходит благодаря углероду не связанному в своем происхождении с биосферой (ювенильному) и высокому генерационному водородному потенциалу HI».
Corg в палеопротерозое 29%, в квартере 0.6%. Количество урана в нефти плавно снижается от палеопротерозоя до квартера.
При формировании коры материков в процесс дифференциации вовлечена мантия: расчеты, сделанные А. Б. Роновым и Д.А. Ярошевским показывают, что для литосферных элементов, в дифференциацию должны быть вовлечены вещества с глубины: для кремния 60 км; алюминия - 140 км; кальция - 50 км; натрия - 180 км; для калия - 1300 км. [В.В. Белоусов, 1975] [5].
«... при подъеме газа вверх, давление падает. Достаточно уменьшить давление в 10 раз - от 50 до 5 килобар, чтобы активность кислорода возросла в миллион раз...» (А. Портнов, 1999).
- Р.Б. Баратов (1973) установил, что «архейские отложения юго-западного Памира и Каратегина сначала подверглись метаморфизму гранулитовой фации при Т=750О С и Р = 7 кбар в Каратегине и до Т=800о С и Р = 7,5 кбар и выше, в юго-западном Памире, в дальнейшем повсеместно высокотемпературному диафторезу и ультраметаморфизму в условиях амфиболитовой фации. Повышенное давление привело к эклогитизации пород. Таким образом, породы кристаллического основания образовались в термодинамических условиях при Т=600-750о и Р = 6-7 кбар, что соответствует глубинам их формирования от 5 до 10 км» [5].
«Новейшая неоген-четвертичная постплатформенная горообразовательная стадия. В Южном Тянь Шане — проявление высокой сейсмической активности, на севере — формируются сводовые рифтовые поднятия и расчленяющие их разломы и грабены, которые отнесены к Трансазиатскому поясу Наливкина. Эпоха сопровождалась подъемом нагретых вод с растворенными в них ряда металлов и летучих соединений ртути, сурьмы. Циркулировали также нагретые нефтяные и приповерхностные воды. Ими в осадочных формациях молодых мезозойских и кайнозойских покровов дополнительно переоткладывались и концентрировались газ, нефть, сера, стронций, руды цветных металлов, ряд редких и рассеянных элементов» (В.И. Попов, 1976)
С факторами (сила тяжести, центробежная сила вращения, волна энергии), связан процесс вытеснения легкоплавких, легколетучих элементов и их ассоциаций из глубоких сфер системы Земли. Наличие коровых волноводов, которые перекрываются более плотными экранирующими породами, образуют систему, в которой происходит формирование глобального резервуара газонасыщенных пород.
Дифференциация (разложение, разделение) вещества под воздействием волны энергии, способствует синтезу газа, газоконденсата, нефти.
Отмечен феномен природных ядерных реакторов (возраст 1,968 ± 0,050 млрд лет), определивших дополнительное преобразование нефтегазоматеринских пород серии Franceville в результате ионизирующего излучения урана и продуктов его распада. (спрвка: Природный уран содержит около 0,71 % U-235, 99,28 % U-238 и примерно 0,0054 % U-234).
«Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены.
Углерод обладает удивительной способностью присоединять атомы различных элементов — он образует до трех миллионов всевозможных соединений.
Системные свойства углерода, способствуют формированию минералогических ассоциаций в структурируемой волнами энергии тектоносфере автоколебательной системы Земли.
235U – является первичным ядерным горючим; 233U, 239Pu – вторичным ядерным горючим.
«Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены. Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространённого на Земле водорода.
Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза.
Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза.
Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах» .
На данный момент известны 7 обычных изотопов водорода, а также один экзотический атом водород-4.1 (мюоний, 4He-μ).
D + D --- 4 He + гамма-излучение.
Дейтерий обладает лучшими свойствами замедления нейтронов.
«Реакции синтеза между ядрами лёгких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.
Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у урана-238. Альфа-радиоактивные ядра - теллур и массового числа около 106—110, а при атомном номере больше 82 и массовом числе больше 200 практически все нуклиды альфа-радиоактивны, хотя альфа-распад у них может быть и не доминирующей модой распада.
Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.
К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от углерода 12С до серы 32S. Во всех видах радиоактивности, кроме γ‑распада, изменяется состав ядра – число протонов Z , массовое число А или и то и другое.
На Земле гелий образуется в результате альфа-распада тяжёлых и легких элементов альфа-частицы, излучаемые при альфа-распаде, — это ядра гелия-4. Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается метаном, концентрация гелия в котором может достигать 7 % от объёма и выше.
С-хондриты содержат много железа, которое почти всё находится в соединениях силикатов. Благодаря магнетиту (Fe3O4), графиту саже и некоторым органическим соединениям углистые хондриты приобретают тёмную окраску. также содержат значительное количеств гидросиликатов (серпентин, хлорит, монтморилонит). Гидросиликаты в составе хондритов существенно влияют на их плотность.
УВ древнейший минерал планеты. Запасы УВ, - неистощимы. Источник их образования — диффренцаця ходрита, - алюмосиликата, - кремнеалюмосиликата, -----нефть, газокондесат, газ, гелий, водород.
Опираясь на выше изложенное: водород и гелий,углистые хондриты - создают неоднородности космоса…
УВ образуются под воздействием энергии, которая возникает в результате ядерных реакций происходящих в системе Земли.
УВ - древнейшие минералы планеты.
УВ образуются и подвергаются преобразованию на протяжении всего "жизненного" цикла системы Земли, в связи с тем, что они есть по факту, производные гелия, водорода и углистых хондритов.
Необходимо отметить, что динамические процессы, связанные со структурно-вещественным преобразованием системы Земли, ярко выражены на других планетах солнечной системы (см. выше).
УВ могут в том или ином количестве образуются из всех видов пород, под вод воздействием волны энергии исходящей от экзоэнергетических элементов.
Конечные продукты дифференциации вещества хондритов, под воздействием волны энергии, - нефть, метан, водород, гелий.
Планеты-гиганты и планеты земной группы своим плотностным характеристикам резко различны, - это есть яркое проявление процесса дифференциации вещества.