Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
В сентябре 1905 года появилась статья А. Эйнштейна «К электродинамике движущихся сред», в которой были впервые сформулированы положения специальной теории относительности. Соотношение между массой и энергией:
E=mc2
где, E - энергия системы, m - её масса, c-скорость света.
Энергия: (Е), единицы измерения, система СИ-(Дж), система СГС — (эрг).
E=mc2 — формула А. Эйнштейна, указывает на эквивалентность массы вещество и энергии. То-есть, объект исследования: вещество и энергия.
1907 году Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел. Еще одно подтверждение потенциальной мощи введенной Планком новации поступило в 1913 году от Нильса Бора, применившего квантовую теорию к строению атома» [Википедия].
Сила тяжести направлена к центру системы, в связи с чем планета приобрела шарообразную форму, при этом, легкоплавкие, легколетучие элементы и их соединения были вытеснены в земную кору магматического происхождения.
Работы М.В. Петровского, А. Кайе, П. Трикара, показали, что «тектонические структурные формы, образующиеся в земной коре, отображаются в виде определенных форм рельефа. Эпейрогенические процессы выразились в периодической деформации, которые возникают при прохождении волны, генерируемой в недрах Земли. Колебания разных порядков, возникающие в Земле, установлены путём точных инструментальных измерений. Суммирование колебаний приводит к возникновению явления резонанса» [5].
По В.В. Богацкому [1986], «Зоны повышенной деформации разделяют относительно спокойные области. Они же являются коллекторами магмы, флюидов, гидротермальных растворов. Размер зон повышенной деформации очень различен, а внутри каждой зоны повышенной деформации могут быть выделены зоны более низкого порядка, разделенные относительно спокойными участками. Учитывая такую многостепенность деформированных зон, можно сделать единой закономерностью все тектонические взаимоотношения - от планетарных до локальных. Геологическая закономерность, которая здесь сформулирована, есть отражение двух физических законов:
1. при любой деформации твердого и вязкого тела возникает разделение его на зоны, в которых сосредотачиваются преимущественно деформации, и на разделяющие эти зоны слабо деформированные блоки, причем в таких зонах и блоках могут быть отдельные зоны и блоки низшего порядка. Самым низшим порядком зон повышенной деформации являются некоторые из решеток кристаллов. Верхний порядок зависит от размеров деформируемого тела. В ходе деформации возникают новые зоны, а старые упрочняются, но с возрастанием деформаций они могут снова оживать.
2. Зоны повышенной деформации отличаются повышенной степенью проницаемости для магмы, флюидов, газов, гидротерм, волн напряжения»
Связующим звеном геопроцессов, является волна энергии, которая генетически связана с деформирующими напряжениями иерархии полей напряжения: «В основе понимания развития и районирования земной коры и ее полезных ископаемых, лежат глубинные мантийные, коровые физико-химические деформации и порождаемые ими движения осадочных формаций» [Д.В. Наливкин, В.А. Николаев, А.Е. Ферсман, Д.И. Щербаков, А.С. Уклонский, Б.Н. Наследов, В.И. Попов и их ученики] [5,7].
С физико-химическими деформациями генетически связано возникновение волн энергии как продольного, так и поперечного типа всех уровней иерархии, под воздействием которых вещество выводится из состояния динамического равновесия, что приводит к началу геологических процессов.
Из всех известных природных явлений системные свойства волны энергии способны структурировать пространство системы Земли с проявлением закономерностей размещения месторождений в блоках земной коры. Месторождения располагаются в блоках, подчиняясь определенному закону, то есть, проявлена комплементарность системным свойствам волны энергии. Проявлена, как показано в работе дискретность, периодичность размещения месторождений минерального сырья.
Вещество мигрируя из одной формации в другую, подвергается преобразованию на атомарном уровне, приобретая новые качества и свойства. Физико-химические деформации генетически связаны с взаимодействующими полями напряжений, возникновение которых связано с силовым полем гравитации и центробежными силами вращающейся системы.
Ведущим фактором рудогенеза, является фактор энергетический.
С разделением пространства системы Земли (космоса), зоной интенсивной степени деформации (проницаемости), обладающей высоким энергетическим потенциалом, связывается формирование системы: сводовое поднятие - океаническая впадина
Разделенные области обладают не только различными энергетическими потенциалами, но и разной степенью проницаемости тектоносферы, что повлияло на формирование гранито-метаморфического слоя системы Земли. Волна энергии исходящая из области ядра, также способствует процессу расширения системы Земли. Системы глубинных разломов контролируют миграцию вещество в системе Земли, расположение источников энергии и формирование архитектуры тектоносферы.
По В.М. Рарвальскому, «сложной динамической системой называется развивающаяся в пространстве и во времени совокупность объектов, определенным образом связанных друг с другом в единое целое и состоящие из большого числа элементов. Сложная динамическая система обладает такими свойствами (эмерджентность), которых не имеют образующие ее объекты и элементы. Сложная динамическая система является кибернетической, когда она имеет хотя бы один управляющий объект (алгоритм), который не зависит от материальной реализации самих объектов» [5,7,10].
Исследования показали, М.М. Довбич, Н.Ф. Балуховский, что:
«цикличность геологических процессов, хорошо коррелируется с циклами определенных астрономических явлений, связанных с вращением». Л.Л. Худзинский, изучая сейсмику Приэльбрусья, делает вывод, что «...на процессы, происходящие в активных флюидо-магматических очагах, влияние оказывают вариации гравитационного поля» [5].
Солнце вращается вокруг центра галактики Млечный Путь. Средняя скорость составляет 828000 км/час. Один оборот занимает около 230 миллионов лет. Млечный Путь является спиральной галактикой. Считается, что она состоит из центрального ядра, 4-х основных рукавов, имеющих несколько коротких сегментов. Солнечная система располагается в спиралевидной подсистеме галактики, обладающим высоким энергетическим уровнем, – к вопросу разделения пространства космоса на области с низкой и высокой степенью энергетики. Система Земли вращается вокруг своей оси, вокруг Солнца и вокруг галактики, совершая при этом квазисинусоидальные колебательные движения в плоскости галактики.
Система Земли представляет собой деформированное тело вращения, которое отражает неоднородность пространства космоса. Структура планеты представляет собой деформированную систему (иерархию) блоков, формирование которых связывается с существованием взаимодействующих полей напряжения системы Земли и волной энергии исходящей от ядра системы.
Форма системы Земли близка к поверхности эллипсоида вращения, экваториальный радиус которого равен 6278,245 км, а полярный 6356,863 км (эллипсоид Красовского К = 2.3%). Система может быть представлена также трехосным эллипсоидом, в котором разность между большой и малой полуосью экватора составляет 210 м. Ядро ограничено сферической поверхностью с радиусом 3473,4 км. Разница между экваториальным и полярным радиусами 21,378 км, средний радиус 6371,2 км¸ длина окружности - 40075,7 км, поверхность Земли - 510000000 квадратных км. Удельное значение поверхности суши 29%, воды - 71%. Раздел мантии и ядра отвечает глубинам 2500-2900 км (что соответственно равно 0,608-0,545 радиуса, считать от центра Земли как основной точки отсчета). Граница внутреннего ядра - 4500-5000 км, то-есть 0,294-0,215. R.
«Автоколебания - это незатухающие колебания в системе при отсутствии переменного внешнего воздействия. Амплитуда и период колебаний определяются свойствами самой системы. Чтобы колебания были не затухающими, поступающая в систему энергия должна компенсировать потери энергии системой. Значения амплитуды колебаний, при которых происходит компенсация потерь в целом за период, являются стационарными, амплитуда колебаний определяется свойствами самой системы. При амплитуде колебаний меньше стационарных, поступление энергии превышает потери, поэтому амплитуда возрастает, достигая стационарного значения - происходит самовозбуждение колебаний системы. При амплитудах больше стационарных, потери энергии в системе превышают ее поступление, и амплитуда уменьшается, достигая стационарного значения.
В автоколебательных системах выделяются три основных элемента: колебательная система; источник энергии; устройство, регулирующее поступление энергии от источника в колебательную систему»
Устьянцев Валерий Николаевич:
Энергетика автоколебательной системы Земли
Величина 21,4 км, обусловливает предельное значение, - амплитуду вертикальных перемещений вдоль радиуса Земли.
Реальное предельное значение гипсометрического размаха, зафиксированного на поверхности Земли, равно 19 км.882 м. Оно определяется двумя экстремальными значениями: предельной высотой гор равной 8848м, и наибольшей отметкой глубины океанического дна (Марианская впадина), равной 11034м. Сопоставив значения размаха возможных изменений отметок поверхности (21,4км) и реальное предельное значение гипсометрического размаха - разница между ними равна 1,5 км (7%) - постоянная величина потерь, связанных с трением в автоколебательной системе Земли. Декремент затухания автоколебательной системы Земли очень высок - 0,93 (КПД системы Земли) [10]. Реальное предельное значение гипсометрического размаха, фиксируемое на поверхности Земли, равно 19 км 882 метра. Возникает вопросы: какова минимальная длина волны, в пределах которой реализуется амплитуда, равная 19.9 км, и каковы размеры других волн, генерируемых автоколебательной системой Земли [10]. Вращающаяся Земля, представляет собой автоколебательную систему, имеет набор собственных колебаний, которые порождают единую всеземную систему стоячих волн, каждая из которых представляет собой генератор и камертон, способный и готовый к резонансу. Когда в недрах Земли возникают частные колебательные системы, то неизбежно возникает интерференция. Если периоды местных волн совпадают с одной из волн, то наблюдается резонанс. Возникновение зон общеземных стоячих волн — основной формообразующий механизм планетарных структур. Гармоники, возникающие на базе общеземных стоячих волн, оказываются основным механизмом, формирующим региональные геологические структуры. Резонанс, возникающий в результате интерференции волн, генерируемых общеземным и региональными источниками, приводит к образованию местных структур. То-есть, система общеземных стоячих волн и региональных волн и формируемых на их основе гармоник, а также резонанс возбуждаемых ими волн и региональных волн создают упорядоченные интерференционные решетки, на базе которых возникают тектонические дислокации — пликативные и дизьюнктивные структуры.
1. Уровень энергии, расходуемый на колебательные движения в каждом частном ареале, определяет не только его размеры, но и размеры формируемых тектонических структур и амплитуды. Тектонические дислокации, формируемые в отдельных геологических регионах, имеют системный характер и отражают как общеземные свойства, так и региональные особенности. Формирование структур местного значения определяется глубиной заложения очага колебательных движений. Принимая в первом приближении колебательную систему Земли за струну, длина которой равна ее диаметру, очевидно, что чем глубже располагается источник возбуждения, тем он беднее обертонами и тем сильнее проявляется основной структурообразующий тон. Автоколебательная система Земли нелинейна, так как сила трения в ней постоянна для каждого уровня ее динамического равновесия и направлена противоположно скорости. В такой ситуации система может совершить лишь некоторое число полу-колебаний и спектр ее частот гаснет, в так называемой полосе застоя. «В известных автору работах, (В.В. Богатцкий, 1986), не опубликовано моделей, позволяющих оценить периодичность и длины волн, генерируемые нелинейной автоколебательной системой. Исходя из представлений о симметрии шара, основ волновой механики и базируясь на числах Ферма:
N = (22)n+1.
Оперируя понятием волнового числа «К» и числами Ферма, которые как доказал в 1976 году К. Гаус, характеризуют правильные вписанные многоугольники, если число Ферма оказывается простым. Простые числа Ферма имеют место при n=0, 1, 2, 3, 4 и соответственно равны 3, 5, 17, 257, 65537. Для автоколебательной системы Земли длина полуволн основных ее обертонов — гармоник должны быть кратны: 1/3, 1/5, 1/17, 1/257, 1/65537, при длине основной полу волны (тона) - /1/.
Таким образом, квантование волн в автоколебательной нелинейной системе Земли происходит как по частоте в пределах каждой подсистемы, так и по декременту затухания, которым задается число подсистем. Исходя из расчетов, нелинейная автоколебательная система Земли должна иметь шесть уровней иерархий.
.В.В. Богацким предложена модель расчета собственных колебаний Земли.
Уровень иерархии 0 (планета Земля) — основной тон 1; уровень иерархии I — обертон 1/3; уровень иерархии II — обертон 1/5; уровень иерархии III — обертон 1/17; уровень иерархии IV — обертон 257; уровень иерархии V — обертон 1/65537.
Геоморфологическая реализация амплитуды выше (+) и ниже (-) уровня геоида: уровень иерархии (у.и.): /0/ - (-11060) (+8848); у.и. /1/ - (-4000) (+3200); у.и. /II/ (-2500) (+1800); у.и. /III/ (-700) (+800); у.и. /IV/ (-46) (+27)); у.и. /V/ (-0.17) (+0.13). Основная общеземная стоячая волна Земли как планеты реализуется в виде непрерывного поднятия или опускания, поверхность которого наклонена под углом не более пятнадцати минут, что соответствует изменению рельефа 3-4 метра на километр.
Общепланетарные зоны стоячих волн представляют собой систему самостоятельных излучателей, каждый из которых генерирует волны меньшей амплитуды, но большей частоты — свои собственные гармоники.
- Зоны общепланетарных стоячих волн являются генератором региональных волн. В результате интерференции общепланетарных волн различного уровня иерархии, а также интерференции таких волн возбуждаемыми региональными генераторами возникают резонансные поля, обусловливающие формирование контрастных локальных структур.
Локальные структуры — ограниченного ареала распространения, однако область их распространения определяется прежде всего, областью распространения резонирующих полуволн, то-есть, по существу создающих их колебательных подсистем. Следовательно, размеры локальных структур могут широко варьировать, так как зависят от параметров создающих их волн.
В одном и том же регионе могут возникать локальные структуры различных размеров — от крупных до мелких. Понятие локальности структуры — заведомо относительно; его определяет не размер структуры, а ее положение относительно порождающих (задающих) колебательных подсистем. Важно отметить, что локальные структуры относительны как по отношению к порождающим их колебательным подсистемам, так и друг другу, ибо каждая из них проявляется лишь на фоне другой относительно более крупной.
- Все это определяет одно из условий контрастности локальных структур — полярность по знаку (фазе колебания). Контрастность может выражаться также потенциалом напряжения, что внешне устанавливается по изменению условий залегания. Последнее представляет собой или качественную смену форм залегания, (например, складчатые формы — дизъюнктивные формы), или количественную (например, резкая смена углов падения и/или простирания). Следовательно, контрастность локальных структур в пределах некоторого ареала подчеркивает, как их специфичность, так и обособленность [10].
«Средняя плотность Земли составляет 5.52 г/см3. Осадочные породы — 2.4-2.5 г/см3; гранитов и большинства метаморфических пород — 2.7 г/см3; основных изверженных пород — 2.9 г/см3. Средняя плотность земной коры — 2.8 г/см3.
Из сопоставления скорости вращения Земли и ее сплюснутости с данными скорости сейсмических волн на разных глубинах и разделах внутри земного шара следующие величины плотности считаются сейчас наиболее вероятными:
- в кровле верхней мантии — 3.1-3.5 г/см3;
- на глубине 1000 км — 4.5 г/см3;
- на глубине — 2900 км — 5.6 г/см3;(Скорость вращения мантии и ядра, сильно разнятся, что приводит к возникновению физ.-хим. деформаций и возникновению волны энергии, под воздействием которой происходит стрктурно-вещественное преобразование системы Земли. пр. автора).
- в кровле ядра — 10.0 г/см3:
- в центре Земли — 12.5 г/см3.» [В.В. Белоусов].
«Средняя величина теплового потока — 1.5*10-6 кал/(с см2,наиболее распространена величина 1.1*10-6. кал/(с см2).
Наблюдаются значительные локальные колебания этих величин. Колебания коррелируются с современными эндогенными зонами, а также степенью выраженности астеносферы: в тех зонах, где астеносфера выражена сильнее, тепловой поток интенсивнее, где астеносфера выражена слабо — тепловой поток имеет наименьшие значения.
В зонах слабого орогенеза на месте палеозойских геосинклиналей (Урал) интенсивность потока поднимается до 1.5 в тех же единицах. В Тянь-Шане, где наблюдается сильная новейшая тектоническая активизация и где астеносфера выражена хорошо, тепловой поток возрастает до 1.8. Еще выше значения теплового потока в зонах рифтогенеза — 2.0 и зонах современного вулканизма до 3.6.» (В.В. Белоусов, 1975) [9].
«Одновременное проявление (по В.В. Белоусову, 1975), на поверхности материков различных эндогенных режимов, «указывает на гетерогенность теплового поля Земли: в одно и то же время тепловые потоки в разных местах разнятся по своей интенсивности, следовательно, тепловые потоки меняют свою интенсивность как в пространстве, так и во времени» [9].
Данный факт, указывает на существование единого управляющего механизма, под воздействием которого эволюционно развивается система и объекты, в ее геологическом пространстве. Данное обстоятельство, дает возможность широкого применения метода аналогии в геологии.
Механизм зонного плавления
«Для гетерогенной системы, такой как тектоносфера, которая имеет каркасное строение, характерны процессы зонного плавления. Это явление заметил В.Г. Уитмен в 1926 году, работая над проблемой опреснения морского льда и произвел его экспериментально. С тех пор оно детально изучено многими исследователями, изучающими миграцию рассолов, в толще льда (Э. Паундер 1967). Перемещение рассолов навстречу тепловому потоку сейчас не вызывает сомнений, причем это движение может преодолевать силу тяжести. В специальных экспериментах тяжелый рассол поднимался вверх через толщу льда, двигаясь навстречу тепловому потоку путем зонного плавления.
В.А. Магницкий, 1964, показал, что «локальные расплавленные очаги поднимаются вверх путем зонного плавления по направлению теплового потока. Такой процесс происходит при условии однородного состава расплава». Но если состав расплава неоднороден по вертикали, если расплав у подошвы очага обогащен тяжелыми компонентами, то конвекция не возникает даже при большом градиенте температур (В.Н. Жарков 1964). Градиент температур может превысить градиент температуры плавления, тогда расплав будет мигрировать путем зонного плавления уже не вверх, а вниз, то-есть, навстречу тепловому потоку. Такой же эффект возникает и при не полном, частичном плавлении толщи, когда твердый «каркас» - тектонические нарушения образующие блоки, препятствует перемешиванию частично расплавленной магмы. Появляются исследования, подтверждающие вывод о том, что «...обычно допускаемое в геофизических моделях реологии мантии предположение о наличии ньютоновской вязкости является, возможно, ошибочным» (Грин 1979).
Расплав зоны D11 (подошва нижней мантии), при наличии тяжелых компонентов, должен мигрировать путем зонного плавления навстречу тепловому потоку, исходящему от ядра, где температура превышает градиент плавления вещества (53000 К - 6000о К). Кровля нижней мантии располагается на глубине 2200 км., граница мантия - ядро 2900 км. При наличии тяжелых компонентов, путем зонного плавления, в сторону ядра будет миграция железа и др. вещества.
Зоны интенсивной степени деформации развиты в переходной зоне коры континентального и океанического типа, характеризуются проявлением интенсивной вулканической деятельности, с образованием андезитовой формации, в период формирования подвижного пояса, а в орогенный этап - интенсивными процессами метаморфизма, метасоматоза и гранитизации (формируются мощные батолиты и тела гранитоидов). Зона характеризуется высокой сейсмической и энергетической активностью.
Процесс миграции вещества, развивается из пределов тектоносферы области океана в область материков, за счет разности РТ условий. В раннюю эпоху развития, широкое распространение имели зоны спрединга, которые генетически связаны с формированием Земли. Частота заложения спрединговых структур меридионального и широтного простирания, интенсивность процессов деформации стремится к максимуму в экваториальной области. Широтно-меридиональный план деформаций проявлен в большей мере в до рифейский этап развития системы Земли.
В связи с образованием зон, имеющих различную степень проницаемости, дегазация вещества происходила с разной степенью интенсивности. Неравномерная дегазация вещества приводила к процессам, усиливающим его миграцию как по латерали, так и по радиали (в сторону наименьшего давления).
Корни континентов и гор маркируют зоны скучивания и располагаются над стационарным энергетическими центрами, располагающимися в глубоких мантийных сферах, поставляющих вещество в верхнюю область тектоносферы. Наличие процесса, в результате которого образуются корни, не только доказывает на наличие стационарных энергетических центров, но и отрицает гипотезу дрейфа материков.
Условия формирования различных типов земной коры.
Эффект высокой степени дифференциации вещества, проницаемости континентальной земной коры и низких значений РТ, привел к процессу формирования гранито-метаморфического слоя.
Такие условия возникают, по М.В. Муратову, 1975 [5] в областях развития глубинных архейских расколов земной коры. Выделяются два типа геосинклинальных областей:
1. геосинклинальные троги заложены на коре океана;
2. троги заложены на коре материка.
Троги возникали в результате деструкции земной коры, процесс которой связывается с возникновением избыточного подкорового давления со стороны мантии. В обоих случаях характерным является проявление диабазового вулканизма.
Факт быстрого нарастания градиента мощности гранито-метаморфического слоя, отражает принцип комплементарности вещественного состава среды.
На материковой коре процесс протекал уже на базе раннее возникшего гранитометаморфического слоя, что приводило к быстрому преобразованию вещества и быстрому наращиванию мощной земной коры материкового типа.
Процессы деструкции здесь протекали интенсивно (фактор высокой степени проницаемости тектоносферы, условия относительно низких значений РТ; уже гранитизированный материал вовлекался в геосинклинальную переработку, что также способствовало ускорению процесса формирования гранито-метаморфического слоя (принцип комплементарности среды); в область материка происходит миграция вещества из области океана в материковую мантию, дифференциации вещества способствуют условия СЭЦ. Троги достигали глубин свыше 50 км», по данным М.В. Муратова (1975) [5]. Наиболее мощно процессы гранитизаци развиваются пределах срединных массивов, которые имеют тесную связь с мантией, такие области характеризуются часто как области отрицательных гравитациооных аномалий. Вещественный состав их представлен в основном магматическими породами. В основе возникновения разных типов коры лежат процессы физико-химических деформаций, разделивших систему Земли на области низкой и высокой степени проницаемости, что привело к образованию систем:
1. атмосфера — кора;
2. атмосфера — гидросфера — кора.
Устьянцев Валерий Николаевич:
Метод телесейсмической томографии.
При исследовании методом телесейсмической томографии принималось, что латеральная неоднородность сосредоточена в слое от поверхности Земли до глубины 300 км. и при том обнаружено, что самые сильные скоростные неоднородности находятся непосредственно под земной корой. Самое сильное понижение скорости продольных волн в центральном Тянь-Шане составляет около 3% от среднего значения, однако использованный алгоритм предусматривает сглаживание данных, и реальная амплитуда скоростных вариаций может быть вдвое больше. В верхней мантии горячих точек наблюдается аномально низкая скорость распространения волн [по Л.П. Виннику], свидетельствующая о повышенной температуре на глубинах до 250-300 км. Обнаружены сейсмоаномалии на глубинах, превышающих 400 км.
Исследование Тянь-Шаня методом приемной функции показало, что различие между горячей точкой центрального Тянь-Шаня и соседними областями проявляется также в структуре коры и характере перехода от мантии к коре: скорость поперечных волн в коре центрального Тянь-Шаня на глубине 10-35 км на несколько процентов ниже, чем за его пределами, а переход от верхней мантии к коре происходит в более широком интервале глубин. «Размытый» коромантийный переход может быть результатом вертикальных интрузий мантийного материала в кору, а пониженная скорость поперечных волн - эффектом повышенной температуры или присутствия флюидов магматического происхождения. При сопоставлении геофизических характеристик (связь между фазовыми скоростями и аномалией Буге, значениями тепловых потоков, скоростями объемных волн и анизотропией) с аналогичными данными для других регионов (Канадский щит и Япония) они установили, что земная кора Средней Азии, имеет некоторые промежуточные плотностные или вещественные свойства. Здесь наблюдается некоторое увеличение теплового потока, появление анизотропии (в виде несоответствия разрезов по волнам Лява и Релея при лямнда = 110 км от аномалии Буге располагается ниже такой зависимости для щитов и платформ, но выше, чем в Японии. По мнению этих исследователей, анизотропия обусловлена ослабленными слоями (волноводами) в коре и мантии [Л.П. Винник, 1998] [5].
При формировании коры материков в процесс дифференциации вовлечена мантия: расчеты, сделанные А. Б. Роновым и Д.А. Ярошевским показывают, что для литосферных элементов, в дифференциацию должны быть вовлечены вещества с глубины: для кремния 60 км; алюминия - 140 км; кальция - 50 км; натрия - 180 км; для калия - 1300 км. [В.В. Белоусов, 1975]
Зоны фазовых переходов — короые волноводы
«Между главными сейсмическими рубежами и рубежами минеральных преобразований, есть хорошее согласование (корреляция), на глубинах:
410, 520, 670, 840, 1700, 2000, 2200-2300 км).
1. На рубеже 670 км, шпинелеподобный рингвудит трансформируется в ассоциацию:
железо - магниевого перовскита и магнезиовюстита.
2. На рубеже 850-900 км, пироп (магниево-алюминиевый силикат), преобразуется в ромбический перовскит (железо-магниевый силикат) и твердый раствор корунд-ильменита.
3. На рубеже 1700 км. происходит изменение свойств различных кристаллов.
4. На глубине 2000 км, фиксируется образование плотных модификаций кремнезема и начинаются структурные изменения вюстита.
5. На глубине 2200-2300 км, происходит структурная трансформация корунда» [Ю.М. Пущаровский].
«Томография и фазовые переходы в нижней мантии,природа слоя D”. В. П. Трубицын 2017, ИФЗ РАН РФ. Слой D” был выделен Булленом как сферический 200 км слой на дне мантии с аномальным поведением сейсмических скоростей. В последнее десятилетие была построена модель строения и геодинамики нижней мантии и выяснена природа слоя D”. Оказалось, что этот слой отличается и фазовым состоянием вещества, и химическим составом. В слое D” основное вещество нижней мантии перовскит переходит в новую фазу постпервскит. Кроме того, на дне мантии скопилось утяжеленное вещество с повышенным содержанием железа. По латерали слой D” резко неоднороден и по химическому составу, и по содержанию постперовскита, и по температуре, и по толщине. Достигающие дна мантии холодные литосферные плиты вытеснили утяжеленное вещество, которое собралось в два горячих скопления. Эти скопления удерживаются восходящими течениями под Африкой и Тихим океаном и достигают высоты до 500-1000 км. При этом благодаря их повышенной температуре, в них мало постперовскита. В тоже время, между скоплениями благодаря пониженной температуре, образуются толстые, до 200 км, линзы постперовскита» [ИФЗ РАН РФ]. Под воздействием силы тяжести направленной к центру системы Земли, - планета приобрела форму шара. Возникло глобальное поле напряжения, разгрузка которого выразилась заложение глобальной сети тектонических нарушений как по радиали, так и по латерали, от дневной поверхности и до центра системы, - чему способствовали и центробежные силы вращения. С данными действующими факторами (сила тяжести и центробежная сила вращения), связан процесс вытеснения первичных абиогенных легкоплавких, летучих элементов и их соединений, из глубоких сфер системы Земли, в земную кору магматического происхождения.
Осадочный слой является производным разложения алюмосиликатов, - изверженных пород, с которыми связывается генезис нефти, т.е., нефть, - минерал абиогенного происхождения. Становление магматических формаций сопровождается процессом разгазирования пород и выделением (ювенильных) постмагмотических растворов, с которыми генетически связаны углеводороды. То-есть, зона генерации углеводородов является литосфера и земная кора. Область локализации — осадочный чехол системы Земли. Таким образом, сложная геохимическая система углеводородов (нефть, газ). Процессы, происходящие в системе, связываются с динамикой вращения геоида, на что указывает пространственное расположение корней континентов и глубина их заложения, развитие магмагенеза области экватора, восточных областей Азии и других областей Северного полушария. Степень дифференциации вещества, отражается глобальными гравитационными отрицательными и магнитными положительными аномалиями. [1 Становление магматических формаций сопровождается процессом разгазирования пород и выделением (ювенильных) постмагмотических растворов, с которыми генетически связаны углеводороды. То-есть, зона генерации углеводородов является литосфера и земная кора. Область локализации — осадочный чехол системы Земли. Таким образом, сложная геохимическая система углеводородов (нефть, газ). Процессы, происходящие в системе, связываются с динамикой вращения геоида, на что указывает пространственное расположение корней континентов и глубина их заложения, развитие магмагенеза области экватора, восточных областей Азии и других областей Северного полушария. Степень дифференциации вещества, отражается глобальными гравитационными отрицательными и магнитными положительными аномалиями. [5]
С.Д. Виноградовым и О.Г. Шаминой (1968) в Гармском блоке на глубине от 12 до 24 км. установлен волновод пониженных скоростей (Vp =5,7км/с). Коровые волноводы обнаруживаются на глубинах 5,5; 7,0; 10,0; 12,0-24,0 км) Средняя Азия).
А.Н. Дмитриевский отмечает волноводы на глубине 10-25, 55-80, 110-120 км (на платформе - Западная Сибирь) - выявлены флюидонасыщенные зоны.
Т.М. Злобина отмечает волноводы на глубине 10-12, 25-28 км, раздел «Мохо» (Канимансуркое месторждение, Средняя Азия).
Раздел Мохоровивичича имеет четкие границы с выше залегающим «базальтовым» слоем и близок к дневной поверхности — Алданский щит, с нижним перидотитовым слоем — раздел имеет не четкую границу.
Дальний Восток: 4-8, 11-19, 15-23 км - зоны размещения флюидо-магматических очагов (подвижный пояс).
Р.З. Тараканов и Н.В. Левый - «в переходной зоне от Азиатского материка к Тихому океану в мантии на глубинах 65-90, 120-160, 230-300, 370-430 км. выделяют четыре астеносферных слоя с усиленным поглощением поперечных волн, перемежающихся со слоями повышенной прочности».
Средняя Азия: кровли астеносферы под подвижным поясом фиксируются на глубине — 80 км, 240 км и 390 км [Лукк и Нерсов].
Раздел «Голицина» 400-430 км-кровля верхней мантии.
Раздел: подошва верхней мантии (670) км-кровля средней мантии.
Раздел: внешнее ядро системы Земли-подошва нижней мантии — 2900 км.
Устьянцев Валерий Николаевич:
«Низко скостная зона в районе современного вулканизма приподнята до глубины 50 км. По данным магнитотеллурических зондирований установлено, что земная кора имеет слой повышенной электропроводности на глубинах 10-40 км. Этот слой развит под средней частью полуострова и вытянут вдоль Камчатки на 1000 км., он приурочен к внутренней вулканической дуге. Здесь слой приближается к дневной поверхности до глубины 8-10 км, а его электропроводность максимальна. В верхней мантии выявлен слой пониженного сопротивления, кровля слоя на Западной Камчатке на глубине 100 км, а в зоне современного вулканизма, на глубине 50 км. В сторону Тихого океана проводимость слоя существенно убывает (до единиц Ом). Поверхность слоя близка к изотерме 12000 С и представляет собой границу ниже которой происходит частичное плавление вещества (астеносфера).
Отметим, что проводящие зоны в земной коре приурочены к интервалу геоизотерм 400-8000, породы при таких температурах имеют электрическое сопротивление сотни-тысячи Ом* м. (пр. автора: кремний — полупроводник !). Природа проводящих зон Камчатки сопротивлением десятки-единицы Ом* м, связывается с наличием жидких флюидов и электорпроводящих сульфидных образований» (Ю.Ф. Мороз) [5].
Астеносфера:
«Термодинамические расчеты растворимости воды в силикатах на различных глубинах показали, что «ретроградное выделение воды с образованием разгазированного вещества совпадает с волноводом» (Э.Б. Чекалюк, Я.Н. Бельевцев, 1972) [8]. Это дает основание считать указанный слой (астеносфера), главным производным для выделения летучих и ювенильной воды. «При магматических процессах, они мигрируют в смеси с магмой и выделяются при вулканизме или кристаллизации интрузивов (постмагматические растворы). Состав слоя — основной источник регенерации базальтовой магмы (в том числе и щелочной) и пикритов, поэтому он является преимущественно базальто-пикритовым» (В.С. Соболев, Б.Г. Лутц) [5,7].
В.А. Магницкий (1968) [1] при изучении физической природы слоя установил, что слой низких скоростей вызван не столько эффектом высоких геотермических градиентов, сколько эффектом высоких температур и сопровождался частичной аморфизацией первичного вещества мантии (пиролита?), но без существенного изменения химического состава. «По подсчетам И.В. Мушкина, «раннемагматическая стадия щелочных базальтоидов (камптонит-терлит-пикритовая ветвь дифференциации) Южного Тянь-Шаня, проходила при 1100-1250ºС и давлении 10-15 кбар.
В этом диапазоне формировались порфировые выделения магнезиального оливина, богатого энстатиновыми и герцинитовыми компонентами и хромом протопироксена, а также часть шпинелидов (плеонаст, в меньшей мере - хромпикотит). Снижение температуры до 1000-1100º С вызвало инверсию протопироксена, кристаллизацию основной массы, образование магнетитовых каемок вокруг вкрапленников хромшпинелидов» (астеносфера: период деструкции земной коры)» [8].
Значительный интерес представляют данные И.А. Ефимова 1972, о «эклогитах и близких к ним породам из докембрия Казахстана. Он считает, что «для образования антофиллита в ультрабазитах необходимы высокое давление (10-12 кбар) и высокая температура (6300-6500), что типично для условий амфиболитовой фации. Эклогитовая магма является эвтектикой пиролита и выплавилась из волновода на глубине 50 км». «Эклогито-перидотитовый» подслой» [8].
Устьянцев Валерий Николаевич:
«Вращение Земли вокруг оси:
- неизбежно влечет за собой (с позиции механики), появление эффекта спирали, в результате которого, поле напряжений должно регулироваться как элементами сферической (шара), так и винтовой симметрии. Таким образом, даже для заведомо изотропной сферы, винтовая симметрия наведет анизотропию, чем может быть объяснено не только существование гравитационных максимумов и минимумов Земли и на Луне (максоны), но и явные нарушения симметрии шара, типичные для Земли. В результате этого процесса, первичный план деформации изменяется. углубляются процессы дифференциации вещества, возникают четкие границы разделов по латерали и радиали. Образовавшиеся гравитационные минимумы и максимумы (максоны), способствуют активизации тектонической миграции вещества, как по латерали, так и по вертикали» (В.В. Богацкий, 1986).
С данным процессом связывается изменение реологических свойств вещества. Течение магмы приводит к образованию глобального, регионального, локального магнитных полей, активизируется процесс магмагенеза и рудогенеза.
Образовавшиеся гравитационные минимумы и максимумы (максоны), способствуют активизации тектонической миграции вещества, как по латерали, так и по вертикали.
Напряженное состояние является важнейшей характеристикой геологической среды, определяющей развитие геопроцессов. Анализ этой характеристики позволяет дать ответ о роли космогонических факторов в колебательном режиме эволюции планеты.
Цикличность формирования месторождений гранитных пегматитов в геологической истории Земли, удалось выявить Ткачеву А.В.:«Было установлено, что «абсолютные максимумы интенсивности попадают в следующие интервалы (млрд лет): 2,65-2,60; 1,90-1,85; 1,00-0,95; 0,55-0,50 и 0,30-0,25. Если исключить интервал 0,55-0,05, то остальные находятся на расстоянии 0,8+_0,1 млрд лет, то есть формируют квазирегулярную цикличность. С другой стороны, выпавший из этой последовательности пик 0,55-0,50 вместе с более слабыми пиками второго порядка образуют еще один ряд: 1,2-1,15; 2,1-2,05 и 2,85-2,8. совпадают с завершающими фазами импульсов самого интенсивного роста ювенильной континентальной коры в истории Земли. Процесс происходил волнообразно».
Сотрудниками Института физики Земли АН СССР, выявлена аномалия, путем вычисления изостатических аномалий силы тяжести, осредненных по площадям 1º×1º, и обусловлена обширными плотностными неоднородностями на больших глубинах.
На этом фоне проявлены региональные аномалии с довольно значительными горизонтальными градиентами - до 0,15 млг/км, их амплитуда достигает нескольких десятков миллигал. Наиболее крупные отрицательные аномалии охватывают Среднюю Азию при плотности Б=-1, мощность слоя (аномалии) больше 500 км. на Памиро-Алае, 350-500 км в Северном и Южном Тянь-Шане, Бухаро-Газлинском и Марийском районах, и 150-300 км - Ферганской долине и Туранской плите. (ИФЗ РАН РФ).
Становление магматических формаций сопровождается процессом разгазирования пород и выделением (ювенильных) постмагматических растворов, с которыми генетически связаны углеводороды.
«Процесс магмаобразования происходил в антидромной последовательности» (В.А. Ермаков, О.А. Богатиков, и др.)
По расчетам В.И. Шрайбмана:
- «изостатическая компенсация достигается только на уровнях, близких к основанию верхней мантии (область залегания корней гор и континентов)» [Беляевский, 1974] [1]. Это свидетельствует о плотностной ее неоднородности, которая в целом под орогенами разуплотнена и только в пределах Ферганской впадины наблюдается ее уплотнение. Здесь избыточная плотность вещества верхней мантии достигает 0,5 г/см3. [Бутовская, 1977, Ферганская впадина] [5,7]. Сейсмические исследования показывают наличие выпуклостей под впадинами, где происходит изменение свойств вещества. Образование выпуклостей под впадинами естественней всего связать с подвижностью сейсмических разделов и с приобретением свойств мантийных теми породами, которые ранее входили в состав коры.
Данный факт свидетельствует о наличии нисходящих потоков осадочного вещества, которое погружаясь, приобретает свойства мантийных пород.
Навигация
Перейти к полной версии