Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре

О волновой природе напряжений и деформаций и механизме концентрации пи

<< < (37/79) > >>

Устьянцев Валерий Николаевич:

Ковыкты нецелесообразна до 2015г.

Разработка Ковыктинского месторождения, содержащего стратегические запасы гелия, нецелесообразна, по крайней мере, до 2015 года. Об этом заявил сегодня в Иркутске на экономической конференции зампред правления ОАО "Газпром" Александр Ананенков.
Газпром: Разработка Ковыкты нецелесообразна до 2015г.

По его словам, для хранения гелия с Ковыктинского месторождения пока не готовы необходимые технические решения. Так, Александр Ананенков отметил, что у нынешнего владельца лицензии (лицензией владеет ОАО "РУСИА >Петролеум", контролируемая ТНК-ВР) на это месторождение пока нет обоснования инвестиций по хранению и использованию гелия, а также нет технологической схемы разработки и использования Ковыктинского месторождения. Без этого невозможно перейти к промышленному освоению Ковыкты, считает представитель Газпрома.

"Даже если эти документы будут разработаны и согласованы недропользователем с соответствующими министерствами и ведомствами - для реализации планов необходимо построить хранилища для гелия, а также заводы для переработки, - считает А. Аннанеков, - а на это понадобится не менее 5 лет".

Он отметил, что тема ценных компонентов газа становится наиболее актуальной в связи с началом строительства нефтепроводной системы Восточная Сибирь - Тихий океан. А.Ананенков пояснил, что основные нефтегазоконденсатные месторождения Восточной Сибири и Якутии, являющиеся сырьевой базой для заполнения трубы, содержат попутный нефтяной газ, свободный газ "газовых шапок", гелий, конденсат, которые должны быть эффективно использованы.

По мнению Александра Ананенкова, это и является одной из проблем, которые сдерживают начало полномасштабной добычи природного газа Иркутского, Красноярского и Якутского центров. Необходима комплексное извлечение и переработка всех природных компонентов. В ходе выделения этих компонентов и их переработки должны выпускаться продукты с высокой добавленной стоимостью. Основная задача - не просто извлечение газа и отправка его на экспорт, а организация на Востоке страны комплекса газохимических предприятий и экспорт продукции с высокой степенью переработки.

Однако исполнительный директор компании ТНК-ВР Виктор Вексельберг заявил, что промышленная разработка Ковыкты "может быть начата уже сегодня". В. Вексельберг подчеркнул, что проблемы освоения этого месторождения в отсутствии позиции по нему у тех, от кого это зависит - Минпромэнерго, которое откладывает рассмотрение программы освоения газовых месторождений Восточной Сибири и Дальнего Востока. Он также отметил, что объем инвестиций в Ковыктинское газоконденсатное месторождение в Иркутской области в течение 5 лет может составить около 18 млрд долл.

Напомним, гелиевая проблема, по мнению Газпрома, является основным препятствием для скорейшего начала освоения Ковыктинского газоконденсатного месторождения. А. Ананенков ранее уже заявлял о том, что полномасштабное освоение Ковыкты нельзя начинать, пока не будет решен вопрос хранения и использования стратегического гелия.

4 апреля на "круглом столе" в Москве замгендиректора "РУСИА Петролеум" Андрей Довгань назвал гелиевую проблему надуманной и заявил, что компания не считает необходимым консервировать из-за нее месторождения Восточной Сибири и Якутии. Тем не менее, из-за нерешенности проблем с гелием, разработка Ковыкты до сих пор не начата.

Подробнее на РБК:
https://www.rbc.ru/economics/07/04/2006/5703c2d29a7947dde8e0a61c

Устьянцев Валерий Николаевич:

Р.П. Готтих, 200:
«Обычно микроэлементы разделяют на группы с близкими геохимическими свойствами, что предопределяет то или иное их поведение в геологических процессах. По соотношению валентность - ионный радиус элементы примеси можно разделить на транзитные (V, Cr, Mn, Fe, Co, Vi, Cu, Zn), крупноионные (Cs, Rb, Ba, Sr, Pb), высокозарядные (Ti, Sc, Zr, Nb, Ta, Hf, Y, Th, U), a благородные (Au, Ag). Высоколетучие халькофильные элементы (Ge, Ga, As, Se, Cd, Sb, Te, Re, Hg. TI, Bi) также составляют обособленную группу» [Р.П. Готтих и др.]. Показано, что как твердые битумы, так и мальта, рассеянные в осадочных породах, прорванных кимберлитами, имеют мантийные соотношения изотопов неодима, сходные с аналогичными соотношениями в кимберлитах. Эти данные доказывали перспективность использования изотопной геохимии тяжелых элементов для диагностики источника вещества во флюидных, в том числе восстановленных, системах. Вопрос об источнике вещества в битумах нефтегазоконденсатных месторождений остался, при этом, открыт. Последующие исследования изотопного состава неодима и стронция, выполненные по нафтидам других регионов несколько приблизили к пониманию некоторых геохимических аспектов в области нефтяной геологии. По крайней мере, было показано, что генетически нефть месторождения Белый Тигр не имеет никакого отношения к органическому веществу примыкающих осадочных толщ и вмещающим гранодиоритам, что широко обсуждалось (и обсуждается) в научной литературе. Авторы [Готтих Р.П., Писоцкий Б.И. и др., 2012], приходят к выводам:
- нефти всех нефтегазоносных провинций обогащены по отношению к кларку для верхней коры элементами, присущими фумарольным газам вулканов: Hg, As, Sb, Se, Te, Cd, Ag, Au; выборочно: Re, Ni, Cr, Pb, Bi;
- во всех пробах нефти присутствуют элементы платиновой группы, что отличает нефти от верхнекоровых комплексов и пород осадочного чехла;
- в выделенных с изотопным разбавлением из нефти платиноидах, нормализованный на хондрит спектр сходен со спектром платиноносных руд гипербазитов;
- нефти провинций отличаются как по набору ряда элементов на диаграммах: четные-нечетные, так и по некоторым индикаторным отношениям: Ru/Ir, Ti/Y, Zr/Nb, Nb/Ta, Th/Yb;
- хондритнормализованные спектры лантанидов нефти, в большинстве своем, характеризуются ярко выраженной положительной аномалией по европию, что отличает их от аналогичных спектров органического вещества, пластовых (захороненных) вод, осадочных и кислых магматических и метаморфических пород фундамента. Угол наклона в нормализованных спектрах лантаноидов нефти (La/ Yb)N определяется, судя по всему, как щелочностью источника, так и величиной флюидного давления;
- битумы, рассеянные в осадочных породах нефтегазоносных провинций по своим геохимическим особенностям не «вписываются» в разработанную классификацию нафтидов Успенского-Радченко и не могут, в значительно своей части, являться продуктами преобразований нефти. Разница в уровне накопления ряда элементов между битумами и нефтью достигает 4-5 порядков;
- различие в уровнях накопления ряда микроэлементов в планктоне и битумоидах из ОВ нефтематеринских пород (микронефти) может достигать двух порядков. Кларка для данных образований не существует, а содержание микроэлементов в ОВ определяется геохимическими условиями бассейна седиментации. Уровень концентрирования «биофильных» элементов в органических веществах, развивающихся в областях влияния глубинных флюидов, также существенно превышает уровень их накопления в ОВ на удалении от источников (от 510 раз до двух и более порядков);
- изотопные составы продуктов трансформации магматогенных флюидов (битумов) при инверсии редокс-потенциала, в ряде случаев соответствуют источникам расплавов, а не предполагаемым биогенным контаминантам, что позволяет использовать изотопию тяжелых элементов в области нефтяной геологии;
- в битумоидах из ОВ доманикового горизонта ЮТС идентифицирована мантийная компонента, соответствующая резервуару DM. Модельный возраст источника отвечает возрасту проявления в регионе среднедевонского этапа магматизма;
- изотопные составы нефти не отвечают изотопным составам пород осадочного чехла и битумоидам ОВ. Возможным источником вещества для нефтеобразующих флюидов могут быть области EM, образовавшиеся, в том числе, и в результате палеосубдукционных процессов» [Р.П. Готтих и др., 2000].
Исследования А. Портнова, 1999

«Кимберлитовые трубки "прокалывают" именно мощную 40-километровую земную кору платформ, а не гораздо более тонкую 10-километровую кору океанического дна или переходной зоны - на границе континентов с океанами, там, где на глубинных разломах расположились сотни дымящихся вулканов и лава свободно изливается на поверхность».
Обширный аналитический и экспериментальный материал позволил построить новую модель образования кимберлитовых трубок и алмазов. Она объясняет многие геологические загадки, связанные с этими сверхглубинными образованиями. В основе модели - обширная информация о газовом, преимущественно водородно-метановом "выдохе" мантии, а возможно, и ядра Земли.
Кимберлитовые трубки - это следы "прокола" литосферы огромными газовыми пузырями, поднимающимися из мантии.
Такой пузырь, стремящийся вырваться на поверхность Земли, пробивает себе тонкий. "Игольный" выход сквозь твердые кристаллические породы фундамента платформы, а уже затем в мягких осадочных породах формируется расширение - "бокал". Глубинный газ раздвигает их страшным давлением в десятки тысяч атмосфер, передающимся из мантии в верхнюю часть земной коры. Приуроченность кимберлитов именно к платформам объясняется тем, что они почти газонепроницаемы. Поэтому под ними скапливаются рассеянные в породах мельчайшие пузырьки газа, которые соединяются в крупные пузыри водородно-метанового состава. При определенном критическом объеме такой пузырь начинает постепенно "всплывать", то есть внедряться в структуру платформы и подниматься к поверхности планеты. Платформы похожи на блюдца, плавающие в аквариуме, со дна которого поднимаются пузырьки воздуха. Пузырьки обтекают "блюдце", но часть газа скапливается под его дном. Газ поднимается из мантии, об этом свидетельствует тот факт, что гелий здесь резко обогащен легким глубинным изотопом гелия. Но в подземных газах платформ такого гелия в тысячу раз меньше, чем в газах вулканов. Следовательно, платформы - плотная "заглушка" для газов мантии. В большие пузыри рассеянный мантийный газ собирается из-за мощного воздействия так называемых горячих точек (об их существовании геологи узнали сравнительно недавно). Когда под платформами сформируются крупные газовые пузыри, в силу вступает закон Архимеда. Плотность газовой смеси (водород-метан) даже при давлении мантии будет меньше плотности воды. А вот плотность самой мантии превышает плотность воды более чем в три раза. Значит, подъемная сила пузыря объемом в 1 кубический километр составит 2,5 миллиарда тонн! И к тому же этот газ раскален до 600-8000 С. Тот факт, что кимберлитовые трубки на глубине сужены в тонкую ножку, говорит о том, что вся огромная подъемная сила газа была приложена к очень малой площади. При этом десятки километров горных пород были словно проколоты гигантской иглой. Так образовался тонкий канал длиной 100-150 километров. Газовый пузырь выжимался по нему вверх, пока не внедрился в мягкие породы осадочного чехла платформы. Всплывая вверх, газовый пузырь создает в своей хвостовой части зону низкого давления. Перекристаллизованные под действием газа мантийные породы дробятся и устремляются в эту зону, с тонкой пробкой. Газ тащит за собой породы мантии (флюиды). В бесчисленных учебниках приведены диаграммы равновесия алмаз-графит и написано, что алмаз возникает из графита. Но почему-то никто не задался вопросом: откуда же в мантии графит?. Ведь он там нестабилен, и его называют "запрещенным" минералом для условий мантии. Иное дело карбиды. Они здесь устойчивы: карбиды железа, фосфора, кремния, азота, водорода.
Карбид водорода - это газ, обычный метан, он подвижен и легко концентрируется в глубинном флюиде. В свое время геологи не придали значения замечательному открытию советского физика Б. Дерягина, который еще в 1969 году синтезировал алмаз из метана и, что очень важно, при давлении даже ниже атмосферного. Это открытие уже тогда должно было бы в корне изменить существовавшие представления об алмазе как о минерале, кристаллизующемся обязательно из расплавов и при высоких давлениях. Данные Б. Дерягина позволили мне рассмотреть возможность кристаллизации алмаза из флюида, газовой смеси в системе С-Н-О.
Оказывается, что в таком флюиде кислород при сверхвысоком давлении мантии теряет свои окислительные свойства и не окисляет даже водород. Но при подъеме газа вверх, при образовании кимберлитовой трубки, давление падает. Достаточно уменьшить давление в 10 раз - от 50 до 5 килобар, чтобы активность кислорода возросла в миллион раз. И тогда он мгновенно соединяется с водородом и метаном. Проще говоря, газ самовоспламеняется - в подземной трубе вспыхивает яростный огонь.
Последствия такого подземного "пожара" зависят от соотношения углерода, водорода и кислорода во флюиде. Если кислорода не слишком много, он вырвет из молекулы метана (СН4) лишь водород. Возникшие при этом пары воды будут поглощены минеральной пылью и образуют серпентинит - характернейший минерал кимберлитов. Углерод, оставшись "одиноким", при давлении в тысячи атмосфер и температуре около 10000 С замкнется ненасыщенными валентными связями "сам на себя" и образует гигантскую молекулу чистого углерода - алмаз! На практике такая благоприятная комбинация компонентов в газовой смеси встречается редко: лишь пять процентов кимберлитовых трубок бывают алмазоносными. Чаще случается так, что кислорода или слишком много для образования алмаза, или недостаточно. В первом случае углерод сгорит и превратится в газы - оксиды: СО или СО2. Тогда возникают безрудные кимберлиты. Они отличаются повышенной магнитностью, потому что в них появился оксид железа - магнетит. Кислорода было много, и он "вырвал" железо из состава силикатов. При дефиците кислорода или метана возникнут лишь пары воды, и они будут поглощены серпентинитом. Выходит, что алмаз возникает как продукт самопроизвольного подземного горения углеродистого флюида. Горение метана увеличивает активность кислорода и отражается на изотопном составе углерода и азота, входящих в состав алмазов, поскольку в окислительной среде концентрируются тяжелые изотопы. Растущие кристаллы алмаза захватывают из газа многочисленные включения пыли - мельчайшие зерна минералов окружающих пород. Возраст этих минеральных включений иногда совпадает с геологическим возрастом кимберлитовых трубок, но чаще включения оказываются гораздо более древними. Так, например, в алмазах знаменитой трубки "Кимберли" (Южная Африка), внедрившейся в окружающие породы 85 миллионов лет назад, возраст включений гранатов-пиропов (определен самарий-неодимиевым методом) - 3200 миллионов лет. В якутской трубке "Удачная", прорвавшей окружающие ее породы 425 миллионов лет назад, возраст включений минерала клинопироксена (определен калий-аргоновым методом) - 1149 миллионов лет. По таким данным геологи обычно делают вывод, что алмазы кристаллизовались в мантии, может быть, миллиарды лет назад, а затем взрывом их выбросило к поверхности Земли. По моему мнению, включения в алмазах были захвачены растущими кристаллами из "пыли" окружающего их газового потока. В последние годы тонкие методы анализа позволили выявить среди включений в алмазах самородные металлы - железо, никель, хром, серебро, а также сульфиды никеля и железа. Как они попали в алмазы ? По моему мнению, все эти металлы восстановлены из минералов глубинных пород - силикатов с повышенным содержанием железа, никеля, серебра и оксидов с высоким содержанием хрома - такими мощными восстановителями, как водород и СО, а глубинный сероводород превратил некоторые из этих металлов в сульфиды.
Алмазная "броня" сохранила эту неустойчивую сульфидно-металлическую пыль в кристаллах. Загадкой для геологов длительное время оставались резкие "сухие" контакты кимберлитовых трубок с окружающими породами. Геологи знают, что вокруг массивов магматических пород всех типов возникают мощные зоны контактовых изменений за счет перекристаллизации и изменения вмещающих пород. А вот на контакте с кимберлитами изменения осадочных пород ничтожны. Оказывается, изменения есть, и очень значительные, но они носят необычный характер. Вокруг трубок возникают мощнейшие - до полукилометра - ореолы концентрации мелких зерен люминесцирующих минералов. Содержание зерен апатита и циркона - минералов, ярко светящихся в ультрафиолетовых лучах, в десятки и даже сотни раз здесь увеличивается. Причем апатит светится не обычным желтым, а голубоватым светом, что характерно именно для апатита кимберлитов. Эти люминесцентные ореолы объясняются мощной "продувкой" окружающих пород глубинным мантийным газом с восстановительными свойствами и такими характерными элементами кимберлитов, как европий, церий, цирконий.
Рождение алмазов не где-то в неведомых "каменных пещерах", как думали раньше, а в самих кимберлитовых трубках, в процессе их формирования, объясняет почти идеальную сохранность алмазных кристаллов, которые находят рядом с кимберлитовой галькой, состоящей из окатанных, оббитых и лишенных граней глубинных минералов, действительно извлеченных из мантии.
На кристаллизацию алмазов из газа указывает также постоянное присутствие в них азота, а иногда - бора. В силикатном расплаве мантии практически нет ни азота, ни бора, но во флюиде эти элементы концентрируются, поскольку образуют газообразные соединения с водородом. В какие-то времена во флюиде, видимо, накапливался и радон. Именно радон, сильнейший альфа-излучатель, мог создать загадочные, необычайно красивые зеленые алмазы. Их окраска, безусловно, связана с воздействием альфа-частиц. Мантийный газ "зависал" в верхних слоях земной коры, поэтому никому из геологов не посчастливилось найти вулкан посреди платформы, разбрасывающий вокруг себя кристаллы алмазов. Найденные кимберлитовые трубки вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество "слепых" кимберлитовых трубок, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет - то в десятки метров» [5,7,20].

Устьянцев Валерий Николаевич:

«Гранаты подразделяются на три группы:
1. С невысоким содержанием магния (18,9 мас.% МgО), повышенным железа (8,7 мас.% FеО) и невысоким кальция (3,3 мас.% СаО).
2. С высоким содержанием магния (22,2-22,5 мас.% Мg0), более низким железа (6,9-5,2 мас.% FеО) и более высоким кальция (3,6-4,5 мас.% СаО).
3. С промежуточными содержаниями магния (20,6-22,4 мас.% Мg0), железа (4,9-6,8 мас.% FеО) и повышенным кальция (5,5-5,6 мас.% СаО).
Гранаты с углеводородными включениями по химическому составу близки к гранатам нодулей вебстеритов и лерцолитов, а также к гранатам из включений в алмазе из трубки Мир (Соболев, 1974). Низкая железистость гранатов с углеводородными включениями (f < 10%) сближает их с гранатами из включений в алмаз, а низкое содержание Fе3+ свидетельствует о восстановительной среде кристаллизации.
Гранаты имеют гроссуляр (1,3-13,0) - альмандин (7,0-18,5) - пироповый (71,6-80,0) состав и содержат многочисленные углеводородные включения с максимальным размером до 200 мкм.
Среди включений широко развиты первичные полифазные включения органического вещества, люминесцирующие при облучении монохроматическим светом с λО=488 нм (спектры люминесценции получены Е.В. Гусевой на спектрометре ДФС-24 с аргоновым лазером). Один из полученных спектров сходен со спектром нефти месторождения Н. Сартыш: максимум его люминесценции находится в области 530,5 нм.
По фазовому составу среди органических включений выделяются:
1. Газовая фаза (5-30%)+ желто-бурая углеводородная жидкость (70-95%)+бесцветные органические фазы (менее 1%). При нагреве в сингенетичной группе включений <газовая> фаза растворяется в желтой жидкости при 320 и 3080 С, твердая фаза медленно растворяется в жидкости. Полной гомогенизации включений достичь не удается, при температурах около 3500 С они вскрываются.
2. Один или несколько <газовых> пузырьков (до 70%)+желто-бурая жидкость. Пузырек <газа> часто располагается в пределах вакуоли, не касаясь стенок последней, иногда деформирован, что свидетельствует о большой вязкости желто-бурой жидкости.
В гранатах с флюидными включениями широко развиты взорвавшиеся включения, свидетельствующие о спаде давления при выносе гранатов со значительных глубин. Среди минералов, включенных в гранат, определены: рутил (0,8 и 0,7 мас.% FеО, 0,5-0,6 мас.% Сг203), доломит (3,6 мас.% FеО ), практически чистый диопсид (0,1 мас.% Сг2O3, 1,2 мас.% Na2О, Са/Са+Мg=48,5%) и оливин с повышенным содержанием никеля.
Оливин характеризуется очень низким содержанием железа (5,2 мас.% FeO) и необычно высоким содержанием никеля (3,1 мас.% NiO). Обычно в оливинах из включений в алмазе примесь никеля не превышает 0,4 мас.% NiO» (Гаранин и др., 1991).
«В гранатах установлены закономерно ориентированные включения диопсида, возникновение которых связывается нами с распадом высокобарного твердого раствора пироп-диопсид. В углеводородных включениях в гранате содержатся полициклические ароматические углеводороды, ПАУ, сходные с другими данными по ПАУ в гранатах, но отличающиеся более низким содержанием. В веществе, экстрагированном хлороформом с последующим испарением растворителя, методом ИК-спектроскопии на приборе IR-435 фирмы <Шимадзу> (Япония) обнаружены полосы поглощения:  СН2- и СН3-групп, цепочки (СН2) n-групп, полосы сложноэфирной группировки и карбоновое поглощение. д.г-м.н. Гаранин В.К.».
По Бородину Ю.В. и Хамидуллаеву Н.Ф., «большинство алмазоносных проявлений в Средней Азии связывается с лампроитами, то-есть с ультра-калиевыми (окислы калия-2-6%), базальтоидными породами, содержащими высокие концентрации окислов магния - 6-24%, титана-2-5%, фосфор- 1,5-4,0%.» Лампроиты практически не отличаются от кимберлитов, по всем параметрам, в том числе и по содержанию алмазов» (В.А. Милашев 1988)» [21].

Металлогения зеленокаменных поясов различных генетических типов и их металлогения. «Важнейшими рудоносными структурами раннего докембрия, играющими ведущую роль в добыче многих видов минерального сырья, являются зеленокаменные пояса. К ним приурочены протяженные металлогенические зоны с крупными рудными узлами, в которых сосредоточены уникальные месторождения железистых кварцитов, золота, медно-никелевых и колчеданных руд, значительные запасы редких металлов, хромитов, титана, марганца и других полезных ископаемых. Зеленокаменные пояса периодически зарождались на протяжении всего раннего докембрия (более 2 млрд. лет), в течение которого сменилось несколько поколений этих структур и произошла их закономерная, направленная эволюция (морфологическая, структурно-вещественная, геохимическая, металлогеническая), связанная с эволюцией земной коры и мантии. Большинство зеленокаменных поясов характеризуется значительным сходством вулканических и осадочных литофаций, условий метаморфизма, интрузивных образований и деформаций.Эти общие черты важны для выделения зеленокаменных поясов в качестве специфических структур раннего докембрия. Однако при изучении генезиса и металлогенической специализации поясов решающее значение приобретают различия в их строении и составе структурно-вещественных комплексов. Имеющиеся данные свидетельствуют о существовании таких различий как между структурами разного возраста, так и между отдельными регионами, о разнообразии геологического строения и условий формирования зеленокаменных поясов. Таким образом, все многообразие строения и развития зеленокаменных поясов не может быть объяснено в рамках единой модели и сведено к одному генетическому типу. Зеленокаменные пояса характеризуются широким спектром рудных формаций, возникавших в определенных геодинамических обстановках на разных стадиях развития, в связи с конкретными структурно-формационными комплексами. Различные комбинации осадочных, магматических, тектонических и метаморфических процессов определяют специфику и разнообразие месторождений, обнаруживающих отчетливую хронологическую изменчивость. С течением времени в процессы концентрирования (образования месторождений) вовлекались новые рудные элементы, усложнялся состав руд, появлялись новые типы месторождений, возрастала роль корового источника полезных компонентов. Основными факторами, обусловившими металлогенические особенности зеленокаменных поясов разных генетических типов, их металлогеническую специализацию и продуктивность являются:
- геодинамические режимы формирования структур, определившие их геологическое строение и развитие, формационный состав, интенсивность тектонических деформаций, магматизма и метаморфизма;
- тепловой режим и степень деплетированности мантии, влиявшие на металлогеническую специализацию исходных мантийных магм;
- состав и мощность земной коры (океанической и континентальной), определявшие особенности фракционирования рудных компонентов;
- длительность функционирования зон спрединга и субдукции («конвеерного механизма» поставки рудных и флюидных компонентов), способствовавших накоплению рудных элементов в зеленокаменных поясах.
Формирование зеленокаменных поясов 3,9-3,3 млрд. лет, происходило на коре базитового состава в режиме плюм-тектоники и привело к образованию протоконтинентов – гранит-зеленокаменных областей и первичному накоплению в зеленокаменных толщах рудных концентраций, коррелировавшихся с мантийными. Источником рудных компонентов служила недеплетированная или слабо деплетированная мантия. Пояса этого типа отличаются низкой продуктивностью и рассредоточенным оруденением.
Большая часть рудных проявлений (медно-никелевых, колчеданных, медно-молибденовых и др.) не имеет практического значения или относится к категории экзотических (месторождения изумрудов Каапваальского кратона), а металлогеническую специализацию и перспективность зеленокаменных поясов определяют в основном месторождения железистых кварцитов, золота и барита.
Наиболее интенсивным и экстенсивным эндогенным оруденением характеризуются зеленокаменные пояса пермобильного типа (3,3 – 2,6 млрд. лет) - зоны океанического спрединга и субдукции океанической коры у окраин протоконтинентов. Основным источником рудных компонентов оставалась мантия при подчиненном значении первичнокорового источника. Слабая деплетированность позднеархейской мантии, мощная океаническая кора, обогащенная рудообразующими компонентами и длительная ее субдукция обеспечили высокую рудоносность поясов пермобильного типа, а возросшая мощность континентальной литосферы способствовала дифференциации магматических расплавов в промежуточных очагах, фракционированию, ремобилизации и концентрации рудных элементов. Металлогенические особенности поясов этого типа определяются в первую очередь приуроченностью к ним крупных и уникальных месторождений золота, железистых кварцитов, сульфидных медно-никелевых и колчеданных руд, группирующиеся в крупные рудные узлы, зоны, пояса. Важное промышленное значение могут иметь также месторождения хромитов, марганца, редких металлов, изумрудов, высокоглиноземистого сырья, талька, магнезита, асбеста и др.
Зеленокаменные пояса (2,6-1,6 млрд. лет) отличаются наиболее разнообразной рудной минерализацией и присутствием полигенных и полихронных месторождений с комплексным составом руд - коллизионные интракратонные (полного и неполного циклов развития) и аккреционные окраинные структуры, металлогения которых имеет свои особенности.
Источник рудных компонентов на разных стадиях развития поясов имел мантийное, нижне- и верхнекоровое происхождение. Более деплетированная раннепротерозойская мантия и меньшая степень ее плавления, меньшая продолжительность спрединга и субдукции обусловили меньшее поступление рудных компонентов из мантии, а интенсивные деформации, гранитоидный магматизм, метаморфизм и экзогенные процессы способствовали ремобилизации и переотложению внутрикоровых их концентраций. Важное значение имеют месторождения железистых кварцитов, комплексных благороднометальных и сульфидных медно-никелевых руд с минералами платиновой группы, весь набор колчеданных месторождений, часто с Au и Ag, меньшее – золоторудные, шунгитовые, порфировые медно-молибденовые, хромитовые, титаномагнетитовые, марганцевые, вольфрамовые и редкометальные месторождения.
Наиболее продуктивными являются интракратонные структуры бассейнового типа (с неполным циклом развития), в которых локализованы уникальные по запасам железорудные месторождения железо-кремнисто-сланцевой формации, крупные месторождения шунгита, комплексные золото-платиноидные и благороднометально-уран-ванадий-редкометальные месторождения в черносланцевых толщах.
Набор промышленно важных ископаемых в коллизионных структурах полного цикла развития достаточно разнообразен, но главная роль принадлежит сульфидным медно-никелевым с платиноидами месторождениям и сопутствующему титаномагнетитовому и хромитовому оруденению.
Аккреционные пояса окраинного типа характеризуются в основном колчеданной, золоторудной и железомарганцевой специализацией.
Таким образом, тип зеленокаменных поясов определяет возможность образования в них определенного набора месторождений. Реализация этой возможности зависит от индивидуальных особенностей строения и развития структур.
Реальная рудоносность и вероятность выявления месторождений зависит от степени сохранности рудных концентраций в процессе их последующих преобразований – метаморфизма, тектонических деформаций, денудации. (по материалам Всероссийской конференции Петрозаводск, 11–13 ноября 2009) В.Я., Корсаков А.К. Геодинамические обстановки формирования зеленокаменных поясов. М.: МГГРУ, 2003. 186 с)

Устьянцев Валерий Николаевич:

Геохимические особенности поведения золота в природных рудообразующих системах

В геологии, особенно при решении проблем рудообразования, отсутствуют однозначные понятия видения процесса. С.Т. Бадалов (2005)
Распределение золота в земной коре составляет  0,004 г/т. Золото относится к числу элементов — моноизотопов, которые представлены в природных условиях своими единственными изотопами.
С.Т. Бадалов отмечает, что «золото в зависимости от проявления своих геохимических свойств в различных природных системах, способно создавать и фактически создает свои очень крупные и уникальные по масштабам локальные концентрации с кондиционными запасами в тысячи и даже десятки тысяч тонн. … Образование столь крупных концентраций золота при условии, что его содержание в подстилающих и вмещающих породах составляет миллиграммы на тонну, обусловлено его многими геохимическими особенностями. Следует оговорить, что подобные концентрации золота могли возникнуть и фактически возникали не за счет его привноса извне в готовом виде из неведомого источника, каким в геологии считаются глубинные части Земли, вплоть до ее верхней мантии».
Формы нахождения золота в условиях его рассеяния, остаются еще мало изученными (по степеням его окисления, которых у золота более десяти, как со знаком плюс, так и со знаком миную). Разнообразны формы его нахождения в водной среде — от ионной — Au1,  и др.,коллоидной, хлоридной, анионной, катионной, металлоорганической, атомарной. Спутниками в процессах миграции являются: Fe2 , SiO2 ,К, Cl, Ag, Pb, Cu, Zn, Mn и др. эл. При различных полиморфных превращениях воды (при +40 С, 180 С 400 С и 600 С, в обычных условиях могут резко изменятся и формы нахождения в ней золота, ну а на больших глубинах земных недр, происходят процессы преобразования как самой воды, так и всех элементов растворенных в ней.
Геохимические особенности поведения золота в некоторых природных системах:
-сидерофильная система- главные минералы — кислородные соединения железа (гематит и магнетит). Проявляется тяготение золота в гранитах к биотиту (железосодержащий минерал). Только после разложения биотита, золото может в дальнейшем участвовать в процессах рассеяния и концентрации (С. Нурата, Сентябский интрузивный массив, м-е. Кальмакыр — магнетит с пиритом).
- халькофильная система, золото имеет единичные соединения с сурьмой (ауростибнит) и висмутом (мальдонит), при их отсутствии в рудном процессе, золото вместе с серебром, тяготеют к теллуру, селену, мышьяку и сере, образуя с ними минеральные соединения. (м-е. Кальмакыр в халькопирите, м-е. Мурунтау, Кокпатас, золото в арсенопирите и пирите). Кварцевые жилы с золотом, носят секущий характер.
- литофильная гехимическая система, характеризуется избытком в ней кислорода, золото — в гидроксильной форме- Au(OH). Месторождения возникают лишь на тех глубинах, где литофильная вода может перейти в обычную. Так, пара пирит — магнетит, в которой золото оказывается одновременно как в пирите в своих халькофильных формах нахождения, так и в магнетите, но уже в связи с сидерофильностью.
- биофильная геохимическая система, возникла в архее, золото находится в халькофильных минералах. «...месторождения возникают при наличии растительности, а главное — привноса в водные бассейны из окружающих пород и месторождений достаточного количества золота, необходимого для образования его концентраций.» (С.Т. Бадалов, 2005). Месторождение Мурунтау — самородное золото, золото в пирите и арсенопирите, органическое вещество не сохранилось.
- нейтральная геохимическая система, анионы-осадители - отсутствуют, золото — самородное, тесно связано с серебром, которое определяет его пробность. Экспериментально доказано, что мельчайшие частицы золота, состоящие из нескольких тысяч атомов, ведут себя подобно жидкостям, а не твердым телам.
Кварцево-золоторудные линзообразные обособления (м-е. Мурунтау, количество — более 40), в которых золото представлено более крупными своими выделениями, чем в своих первичных рудах.
«... свободный кремнезем, особенно его металлоидные формы, с которыми почти постоянно ассоциирует золото, сравнительно легко растворяется из пород и мигрирует в щелочных условиях вместе с золотом, находящимся в этих породах. В результате золотосодержащие кварцевые тела возникают только в тех местах, которые были обогащены золотом в своих сравнительно легкорастворимых формах. В иных случаях кварцевых обособлениях золото находится в минимально-возможных количествах. Естественно, что в подобных случаях не следует искать иных источников образования концентраций золота в связи с кварцем, особенно глубинных, вплоть до мантийных источников. Источником, как правило, либо сами вмещающие их потенциально обогащенные золотом породы, либо подстилающие золотосодержащие породы». (С.Т. Бадалов). Серебро обособляется, что приводит к повышению пробности золота.
Во всех процессах протекающих в земной коре и мантии, активное участие принимает вода во всех ее формах нахождения в системе Земли. Безводные процессы преобразования пород и минералов в них сводятся к перекристаллизации. Вода является универсальным растворителем вещества системы. При каждом полиморфном превращении воды, коренным образом и меняются и ее свойства. Золото подвергается процессам перемещений через растворимость в воде.
Золото в форме Au(OH)3 образуется и может существовать относительно более щелочных условиях условиях, чем Au(OH) Процесс зависит от восстановительно-окислительного потенциала системы, например, система: кора — мантия. Сам процесс преобразования гидроксила (ОН) протекает по следующей (по С.М. Бадалову, 2005) схеме: 2(ОН) – Н2О + 2е. В результате возникает нейтральная молекула воды, а также ионизированная форма кислорода О2 в качестве активного окислителя и два отрицательно заряженных электрона — (2е-).
Гидрофильная форма золота является промежуточной между его рассеянным состоянием в породах и образованием концентраций, особенно в разнообразных рудных месторождениях, где присутствуют халькофильные минеральные формы меди, цинка, свинца и др. с которыми ассоциирует золото. Золото тяготеет к концентрациям вольфрама в форме шеелита (кварц-шеелит-золоторудная формация).
В месторождениях золото будет в большей степени концентрироваться  (тяготеть) к магнетитовым рудам в связи с наличием в них железа в 2-х и 3-х валентных состояний, что способствует золоту с его 1, 2 и 3-х валентностью входить в структуру магнетита, тогда как гематит с его только 3-х валентной формой не благоприятен для вхождения в него золота.
Экспериментально доказано, что мельчайшие частицы золота, состоящие из нескольких тысяч атомов, ведут себя подобно жидкостям, а не твердым телам.
Спутниками в процессах миграции золота, в условиях земной коры, являются: Fe2 , SiO2 ,К, Cl, Ag, Pb, Cu, Zn, Mn и др. элементы. Отметим что, расчеты сделанные А. Б. Роновым и Д.А. Ярошевским показывают, что «для литофильных элементов, в дифференциацию должны быть вовлечены вещества с глубины: для кремния 60 км; алюминия 140 км; кальция 50 км; натрия 180 км; для калия 1300 км».
«...с гнейсами связывается оруденение золото-платиновой группы, а с кварцитами, ассоциируют руды золото кварц-сульфидной платино -содержащей формации, интрузивные комплексы этого этапа представлены перидотит-габбро-норитовой серией с медно-никелевым и платинометальным оруденением».
С Fe2  связывается:
«...происхождение экзогенных месторождений золота, урана, меди и полиметаллических руд раннего протерозоя определяющую роль определяли эволюция океанов и климаты Земли», а также «алмазоносные кимберлиты, лапроиты и щелочно-ультраосновные комплексы палеоокеоанов».

«Пироксенитовый компонент в источнике магмы сибирских траппов, не содержащий сульфидов и оливина в рестите, сыграл решающую роль в происхождении никеля, меди, элементов платиновой группы и низких содержаний серы в родоначальных трапповых магмах, а также исключил возможность раннего рассеяния этих элементов посредством фракционирования сульфидного расплава Норильское месторождение)».
Гранитоидые тела обогащаются золотом в период своего формирования, в силу своей комплементарности к магтетиту SiO2 , K, N, (РЗЭ) и (РАЭ).

«Строго говоря, любые реальные системы следует рассматривать с позиций доказанной И. Р. Пригожиным (1947) теоремы термодинамики неравновесных процессов: «при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропии». Именно такие соотношения и характеризуют энергетическое развитие природы как системы. Состояние равновесия в любом случае остается тем предельным состоянием, к которому система будет стремиться при отсутствии внешних воздействий (если бы она была изолированной)» (Г.Б. Наумов).

Устьянцев Валерий Николаевич:
Механизм поступления в верхнюю мантию литофильных элементов

Теория Б.Г. Лутца.
Механизм основан на представлении о кислотном магматическом выщелачивании. В мантии содержится вода, но вместе с тем, в связи с сильно восстановительной обстановкой, там содержится и свободный водород, большая часть которого уходит в атмосферу. Наличие водорода ведет к кислотному режиму водных растворов и они поглощают щелочи из окружающей среды и ими обогащаются. Но, по мере подъема растворов водород окисляется и частично улетучивается. В результате кислотность растворов снижается и, проходя через верхние слои мантии, они начинают растворять кислотные компоненты, в первую очередь кремнезем, а также редкие земли и радиоактивные элементы. Теперь глубинные растворы приобретают тот состав (щелочи, кремнезем, РАЭ и РЗЭ), который необходим для процессов гранитизации и регионального метаморфизма. Результатом окисления, является также нагревание растворов. Результатом окисления является также нагревание растворов, что позволяет видеть в них не только необходимый для формирования гранито-гнейсового слоя материковой коры химический реагент, но и источник энергии для метаморфизма и гранитизации. Океаническая мания Тихий океан, не выделяет растворов обогащенных кремнием и щелочами.
«Тот же механизм позволяет понять, почему базальтовый вулканизм в эвгеосинклиналях происходит не одновременно с гранитизацией и региональным метаморфизмом, а раньше последнего. Возможно, базальтовые магмы при выплавлении поглощают всю флюидную фазу, и поэтому ювенильные растворы, которые могли бы проводить региональный метаморфизм и гранитизацию не отделяются. Если предположить, что в следующий этап — в геосинклинально-инверсионную стадию — эмульсия базальтовых пленок застывает, то может произойти отделение ювенильных растворов, которые и поднимаются в кору. В этом объяснении намечается связь между геохимическими и геотектоническими процессами» [В.В. Белоусов, 1975].
Через десять лет было показано: О.А. Богатиков отмечает, что «в кислых породах имеются первичные дометаморфические цирконы, в то время, как породы основного состава содержат только метаморфические цирконы» (В.В. Белоусов1985).
При формировании коры материков в процесс дифференциации вовлечена мантия: расчеты, сделанные А. Б. Роновым и Д.А. Ярошевским показывают, что для литосферных элементов, в дифференциацию должны быть вовлечены вещества с глубины: для кремния  60 км; алюминия - 140 км; кальция - 50 км; натрия - 180 км; для калия - 1300 км. [В.В. Белоусов, 1975] 

Геолого-геофизическая модель земной коры и верхней мантии по профилю Фараб- Тамдыбулак (Ф.Х. Зуннунов, М.А. Ахмеджанов, О.М. Борисов, Т. Эргашев 1974г.).
Верхняя мантия: 1 - участки массивного строения, 2 — участки слоистого строения, 3 — переходный слой от земной коры к верхней мантии. « Базальтовый» слой: 4 - участки массивного строения, 5-участки слоистого строения с Vп=6,6 — 6,9 км/сек. «Гранитный» слой: «диоритовый» подслой: 6 — участки массивного строения, 7 — участки слоистого строения с Vп=6,1-6,4 км/сек, 8 — пласт из пород основного состава (метабазальты) сVг=6,5-6,8 км/сек; гранито-гнейсовый подслой; 9 — тела основного и ультраосновного состава сVг=5,9-6,0 км/сек, 10 — тела гранитоидов предположительно дорифейского возраста сVг=5,1-5,7 км/сек, 11 — тела гранитоидов позднепалеозойского возраста (а — геосинклинальные, б — телеорогенные, в — вулканоплутонические) сVг=5,1-5,7 км/сек, 12 — кристаллическая толща архея (?) - нижнего — среднего протерозоя сVг=5,9-6,1 км/сек. «Осадочный слой»: 13 — терригенные породы рифея-венда сVг=4,8-5,8 км/сек, 14 — вулканогенно-осадочные породы палеозоя сVг=4,1-6,6 км/сек, 15 — мезо-кайнозойский чехол со средней скоростью Vг=1,8-3,2 км/сек, 16 — разломы (пронумерованы на схеме: 1 — Амударьинский, 2 — Алатский, 3 — Арало-Гиссарский, 4 — Газлинский, 5 — Южно-Тяньшаньский, 6 — Северо-Кульджуктауский, 7 — Бесапано-Южно-Ферганский, 8 — Ташагыльский, 9 — Северо-Кызылкумский, 10 — Шаргаматский); 17 — граница К, 18 — граница М, 19 — график граничной скорости, соответствующий поверхности фундамента, 20 — график аномалий силы тяжести, 21 — график магнитных аномалий.
Выделяются горообразовательные геохимические эпохи формирования и локализации минерального сырья и разделяющие их равнинообразовательные эпохи.
«От эпипалеозойской плиты, к области до платформенной активизации, увеличивается общий потенциал нефтеносности недр. В зоне сочленения эпипалеозойских, более древних плит, основной потенциал нефтегазоносности, связывается с основанием осадочного чехла, в области корового ослабленного горизонта.
Основной потенциал газоносности, связывается с процессами, происходящими в литосфере и верхней мантии» В.И. Попов].
Срединные массивы области плит и платформ - маркируют зоны генерации нефти и газа…  Срединные массивы области подвижных поясов - маркируют зоны дегазации, в связи с тем, что они не перекрыты осадочным чехлом, в котором происходит локализация минерального сырья. Недооценена роль роль погребенных структур Байкальского цикла тектогенеза - СЗ простирание - рифей. В ту эпоху формировалась осадочная формация - серия "Блайна", в которой аккумулировалось минеральное сырье - Копет-Даг, С. Кавказ, З. Сибирь, Тиман.
Исследования Х. Герстенберга, К. Венцеля показали, что «геохимия изотопов дочерних элементов долгоживущих естественных радионуклидов и особенно геохимия изотопов Nb и Sr, как и исследование изотопного состава кислорода в земной коре, позволили получить существенные результаты по динамике и механизму обмена веществом между корой и мантией, а также по общему развитию земной коры. Полученные ими результаты позволяют заключить, что:
1. огромные материковые ядра возникли до рубежа 3,0 млр. лет назад;
2. рост континентов на продолжении всей истории Земли связан с последовательностью более или менее глобальных событий, сопровождавшихся высокой магматической активностью, которая была обусловлена поднятием магмы из верхней мантии;
3. в течении процесса дифференциации, в отдельных областях мантии, произошло обеднение литофильными ( в частности - рифтовые зоны)» [15].

В.А. Ермаков отмечает, что «земная кора магматического происхождения, сформированная к середине протерозоя, - наглядное свидетельство огромной потери тепла, легколетучих и легкоплавких компонентов протомантии. К концу периода (4,4 — 1,6 млр. лет) было образовано 85-95% континентальной коры. Наиболее древние офиолиты имеют возраст менее 2,8 млр.лет. Образование древнейших пород коры (протосиаль - серые гнейсы) произошло в первые 500 млн. лет».
Исследования В.А. Ермакова показали, что «древние породы земной коры образовались в первые 500 млн лет (геохронологические и геохимические результаты цирконометрии) и породы протосиаля близки по составу серым гнейсам. Наиболее древние офиолиты имеют возраст менее 2,7 млрд. лет».
О.А. Богатиков отмечает, что «в кислых породах имеются первичные до метаморфические цирконы, в то время, как породы основного состава содержат только метаморфические цирконы (1985)».
В протерозое (2,5-1,9 млр. лет) происходят процессы деформации коры, сопровождающиеся внутрикоровым и мантийным магматизмом и высокотемпературным метаморфизмом. К середине протерозоя сформировалась кора магматического происхождения (В.А. Ермаков).   
Метапороды основного и ультраосновного состава имеют возраст архей - протерозой. Первые офиолиты имеют возраст менее 2,7 млр. лет.
Фиксируется повсеместное налегание пород зеленоакаменых поясов на комплексы сиалической коры.
«В архее скорость осевого вращения была менее 10 часов» (М.З. Глуховский, В.Н. Жарков, Ю.Н. Авсюк), «...в связи с чем в экваториальных широтах (±35º), под воздействием центробежных сил в режиме мантийных плюмов, происходило зарождение коры сиалического состава [М.З. Глуховский], а также формирование зеленокаменных поясов первого поколения - Барбертон и Пилбара (3,4-3,2 млр. лет)» [Kolger, 2006] [5].
Зеленокаменные пояса второго поколения (3-2,7 млр. лет) формировались в режиме быстрого осевого вращения.
Многие исследователи [В.В. Белоусов, Н.Л. Боуэн, Г.С. Горшков, Б. Гутенберг, Н.Л. Добрецов, В.С. Соболев, В.А. Магницкий и др.] считают, что, базальтоидный магматизм имеет «сквозькоровый» характер, полагая, что магмогенерирующие очаги располагаются в пределах волновода. Это подтверждается ультраосновными и эклогитовыми включениями («вестников» больших глубин) и связью регионов базальтопроявлений с очагами землетрясений.
Волна энергии и водород, уран способствовали формированию земной коры. Резервуары водорода в земной коре не зафиксированы.
Осадочные породы — производные магматических фомаций.
По Н.В. Виноградову, «вся верхняя мантия в настоящее время, в той или иной мере, деплетирована. С этим взаимодействием связана вся дальнейшая эволюция земного вещества. Геологические доказательства наращивания объёмов континентального материала во времени, должны, следовательно, рассматриваться и как доказательство комплементарно связанного с континентализацией процесса океанизации вещества сиалической коры. Оба процесса могут идти только при условии постоянно продолжающегося и циклически повторяющегося перемешивания вещества коры и мантии. Изотопные исследования дают непосредственные доказательства реальности процессов перемешивания вещества коры и мантии. Существуют, по-видимому, и иные механизмы такого перемешивания, кроме признаваемой ныне субдукции. Один из важнейших механизмов перемешивания связан, видимо, с глубинной конвективной циркуляцией поверхностных вод, с процессами преобразования вещественного состава пород под влиянием циркулирующих вод. Побочной ветвью такого взаимодействия является формирование рудоносных гидротермальных растворов. При этом очень важным в научном отношении оказывается следующее обстоятельство. Концентрирование рудных компонентов в гидротермальном растворе происходит за счёт их кларковых содержаний в породах».

«В условиях Земли аномально низки содержания двух элементов: H и He. Это связано с их «летучестью». Оба эти элемента – газы, и, к тому же, самые легкие. Поэтому атомарные водород и гелий имеют тенденцию перемещаться в верхние слои атмосферы, а оттуда, не удерживаясь земным тяготением, рассеиваются в космическом пространстве. Водород до сих пор не потерян полностью, так как большая его часть входит в состав химических соединений – воды, гидрооксидов, гидрокарбонатов, гидросиликатов, органических соединений и др. А гелий, являющийся инертным газом, постоянно образуется как продукт радиоактивного распада тяжелых атомов. Таким образом, земная кора по существу является упаковкой анионов кислорода, связанных друг с другом кремнием и ионами металлов, т.е. она состоит почти исключительно из кислородных соединений, преимущественно, из силикатов алюминия, кальция, магния, натрия, калия и железа. При этом, как Вы уже знаете, в составе литосферы 86,5% приходится на чётные элементы» (данные Г. Оддо, Италия).
В 1979 году С.И. Ибадуллаев и К.К. Карабаев в своей работе- «Об эволюции магматического процесса в Средней Азии», на основании фактического материала (геологическая карта Средней Азии (1976), показали эволюционную этапность магматизма в разные периоды (от протерозоя до неогена включительно) развития земной коры, и пришли к выводу, что «все известные в Средней Азии интрузивные и вулканические комплексы являются дериватами магматических процессов, проявившихся двадцать восемь раз (от протерозоя до неогена). Они представлены семнадцатью комплексами пород различного состава, генезиса и времени становления. Дифференциация магматических образований происходила в направлении: щелочные - кислые - основные - ультраосновные породы.
Частота проявления магматических комплексов варьирует от 1 до 16. Так,  граниты лейкократовые, биотитовые и двуслюдяные, гранодиоты, гранито-гнейсы внедрялись 16 раз (архей-неоген); габбро, нориты, габбро-диориты, диориты - 14 раз; породы комплекса гранодиориты, кварцевые диориты, гранито-гнейсы и гранито-диорито-гнейсы - 13 раз; диориты, габбро-диориты, кварцевые диориты, кварцевые сиенито-диориты - 11 раз; дуниты, передотиты, гарцбургиты серпентинизированные - 5 раз (в кембрии, ордовике, девоне и карбоне); комплекс пород - перидотиты, пироксениты, габбро, габбро-нориты - 1раз (мел). Комплекс габбро, габбро-норитов, который соответствует "базальтам" внедрялся 14 раз (от архея до неогена включительно).
Высокой частотой внедрения отличаются комплексы пород кислого и основного состава, меньшей - серии щелочных и ультраосновных пород.
В каждом отдельно взятом периоде дифференциация осуществлялась в сторону изменения состава магмы от кислого до основного» [5].
Последовательность состава пород:
дуниты, перидотиты, гарцбургиты серпентинизированные;
перидотиты, пироксениты, габбро, габбро-нориты;
габбро, нориты, габбро-диориты, диориты;
шонкиниты, монцониты, сиенито-диориты;
порфириты, диабазовые, габбро-диабазовые, долеритовые;
диориты, габбро-диориты, кварцевые диориты, кварцевые сиенито-диориты;
гранодиориты, кварцевые диориты, гранито-гнейсы и гранито-диорито-гнейсы;
граниты, адамеллиты, гранодиориты;
гранодиоритовые, адамеллитовые и гранитовые порфиры;
андезитовые, дацит-андезитовые порфириты;
диориты, гранодиориты, граниты, плагиограниты;
плагиограниты, тоналиты;
граниты лейкократовые, биотитовые и двуслюдяные гранодиориты, гранито-гнейсы;
липаритовые, фельзитовые и кварцевые порфиры;
сиенито-диориты, кварцевые монцониты, монцониты;
граносиениты, сиениты, кварцевые сиениты;
сиениты, щелочные сиениты, нефелиновые сиениты, щелочные габброиды.
Осадочный слой является производным разложения алюмосиликатов, - изверженных пород, с которыми связывается генезис нефти, т.е., нефть, - минерал абиогенного происхождения.

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Перейти к полной версии