Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
«Все меняется (в геологическом масштабе времени) и меняется не хаотически, а сохраняя некоторую направленность. Постепенно вещество земной коры все более и более дифференцируется. Идет не усреднение, а пространственное разделение элементов, минералов, горных пород» (В.И. Вернадский, 1920)..
« … Лишь часть вещества организмов собирается в виде каустобиолитов. Это только та часть которая выходит из жизненного круговорота, какая-нибудь миллионная часть химических элементов, проходящих через живое вещество.
Вся основная масса элементов удерживается живым веществом в круговороте, в поле своего действия.
«Циклические элементы составляют почти всю массу земной коры — 99.7;%. Остающийся небольшой остаток — 0.3%, не есть ничтожная величина. Он составляет квадриллионы метрических тонн. В нем сосредоточены радиоактивные элементы, которые в жизни биосферы имеют огромное значение. Это материя в химически-активном состоянии, обладающая свободной (атомной) энергией, производящей в земной коре огромную химическую работу. Количество такой материи — 1015 тонн. Близка к этому же порядку масса другой «активной» материи — живого вещества (живых организмов), не менее глубоко внедряющейся в механизм геохимических процессов.
В земной коре есть два типа «химически» активного вещества: радиоактивные элементы и живое вещество — совокупность живых организмов».
«Нахождение элементов в кремнеалюминиевых массах — сложных, вечно изменчивых системах, более или мене вязких, обладающих высокой температурой и высоким давлением переполненных газами (CH4, H2O - пары)» [В.И. Вернадский, 1934].
В XX веке американец Мабери сделал открытие:
«Во всех нефтях есть азот и азотистые тела — производные метил-хинолина».
«Метилхинолины являются производными хинолина, в молекуле которого соединены ядро бензола и ядро пиридина. Можно рассматривать хинолин как нафталин, в котором одна из групп СН в положении асфальта замещена атомом N. Для хинолина число
однозамещенных производных равно 7. Хинолину отвечают семь метилхинолинов, в котором один из водородов хинолина замещен метильным радикалом — СН3 .
Хинолины составляют основу многих алкалоидов и эти ядра — очень стойкие — чрезвычайно распространены в окружающем нас земном живом веществе. Образование алкалоидов в растениях считают связанным с белками» [В.И. Вернадский, 1934].
«Азотистые соединения везде тождественны, количество их в нефтях: от 1% до 20%.
Лишь под влиянием метилхинолиновых тел, азот соединяется с углеродом, водородом, серой, кислородом. Хинолиновое ядро не подвергается метаморфизации, после гибели организмов и перешло в нефти» [В.И. Вернадский, 1934].
«Свободный азот, отвечающий угольной кислоте в геохимической истории углерода, является главным ювенильным минералом для данного элемента.
Он устойчив во всех известных оболочках земной коры» [В.И. Вернадский, 1934]
Отметим что, на Солнце гелий образуется при реакции, где катализатором являются углерод, азот и кислород.
«Процессы минералообразования, ведущие к образованию локальных высоких концентраций отдельных компонентов, характеризуются не возрастанием, а убыванием энтропии, и, следовательно, не могут протекать самопроизвольно без дополнительного притока энергии извне. Такие системы являются типичными открытыми диссипативными системами.
Поступление дополнительных энергетических ресурсов, необходимых для развития таких систем, может осуществляться не только кондуктивным и конвективным путем, но и за счет волновой передачи энергии от внешних, по отношению к данной системе, осцилляторов.
Вещество и энергия, необходимые для формирования минерального сырья, могут иметь разную природу, разные источники, пути и механизмы поступления в локальную область формирования минерального сырья» (Г.Б. Наумов, 2016).
«Самоорганизация неразрывно связана с волновыми процессами (Г.Б. Наумов), т.е. процессами, самоподдерживающимися в нелинейной, диссипативной среде за счет распределенных в ней источников энергии».
Благородные газы образуются в земной коре и мантии, в процессе радиоактивного распада определенных элементов, таких как уран и торий. Эти радиоактивные элементы подвергаются ядерному распаду, испуская альфа- и бета-частицы, а также гамма-излучение. В рамках этого процесса распада,образуются изотопы благородны газов, которые дают энергию, которая способствует дифференциации вмещающего вещества. Энергетическая подпитка системы способствует процессу минералообразования. УВ в том или ином количестве образуются из всех видов пород, под вод воздействием волны энергии исходящей от экзоэнергетических элементов. Во всех нефтях есть благородные газы уран, торий, которые не совместимы с жизнью. Нефть является минералом абиогенного происхождения. Нефть — минерал производный вмещающих ее пород.
Все без исключения планеты Солнечной системы, отражают механизм формирования сложной системы углеводородов и однозначно указывают на их абиогенное происхождение.
Можно уверенно говорить о том, что с помощью волнового механизма, решается проблема не только закономерного размещения рудных тел, но и вопрос устойчивости и изменчивости геологических систем и минералогических ассоциаций. Различным минералогическим ассоциациям будет соответствовать определенный диапазон волн.
Возможности резкого повышения производства важнейших рудных редких элементов, углеводородов, - заключены в комплексном использовании минерального сырья. Знание закономерностей строения структуры блоков земной коры и механизма их формирования, повышают эффективность геолого разведочных работ и снижают материальные затраты на их проведение, данный фактор приводит в конечном счете к снижению себестоимости добываемого минерального сырья.
Устьянцев Валерий Николаевич:
Благородные газы и их роль в развитии планетарной системы[/b].
Отметим: «Открытие удалось сделать благодаря уникальному прибору – магнитному резонансному массспектрометру – разработанному и созданному в Ленинградском Физико-техническом институте имени А. Ф. Иоффе (он оказался в десятки тысяч раз чувствительнее лучших зарубежных спектрометров). Разработкой приборов и исследованиями по изотопии гелия руководил доктор физико-математических наук, профессор Мамырин Борис Александрович. В практической геологии изотопно-гелиевый критерий позволяет картировать рудоносные зоны (уран, литий и др.), отличать зоны действующих разломов земной коры, оценивать обстановку в сейсмически неустойчивых районах. Этот метод используется для решения ряда гидрологических проблем – например, для определения контуров подводных течений в океанах, для расчета глубин залегания горячих (термальных) водных источников. Становятся еще более точными поиски геологов, т.к. изотопные «метки» позволяют отличать молодые породы от старых, находить перспективные месторождения полезных ископаемых». (Б. А. Мамырин, Г. С. Ануфриев, Л. В. Хабарин, И. Н. Толстихин, И. Л. Каменский). 1982.
- Российские ученые установили, что гелии, которыми «пропитаны» породы земной коры и породы мантии, резко отличны по изотопному составу.
В коре, в различных регионах отношение гелия3 к гелию4 может меняться в десятки и сотни раз и это отношение крайне мало.
А в гелии мантии отношение легкого изотопа к тяжелому оказалось очень стабильным и в тысячу раз больше, чем в гелии земной коры.
Это редчайший феномен природы, поскольку сдвиги в изотопном отношении для различных элементов на Земле не превышают обычно нескольких процентов. В результате изотопных анализов гелия из разнообразных природных объектов был обнаружен, первоначально в газах термальных источников Южно-Курильских островов, гелий с аномально высоким изотопным отношением Не3/Не4 = ~ (3±1) 105.
Дальнейшие исследования и анализ проб, отобранных из многих точек земного шара во всех океанах, на всех материках, на многочисленных островах, показали, что установленный факт носит глобальный характер, и в гелии, продуцируемом подкоровыми слоями Земли, отношение Не3/Не4 выше в сотни и тысячи раз, чем в гелии, генерируемом породами земной коры.
- Американские ученые выдвинули версию образования планеты Земля (источник: https://ria.ru/20181207/1547581979.html). Исследованиями на эту тему занимались специалисты Калифорнийского университета в Дэйвисе. Ученые проанализировали соотношение изотопов неона, захваченных мантией Земли во время формирования планеты. Образцы экспедиция под руководством специалистов из Университета Род-Айленда достала образцы со дна Атлантики. На этот благородный инертный газ, в отличие от водяного пара, углекислого газа или азота, не влияют химические и биологические процессы. По словам одного из авторов исследования, профессора Суджоя Мукхопадхая, в силу этого свойства неона он навсегда сохраняет информацию о своем происхождении.
Ученые выделили три изотопа — неон-20, 21 и 22. Все они стабильны и не радиоактивны, однако неон-21 образуется при радиоактивном распаде урана. Таким образом, количество неона-20 и неона-22 остается неизменным с момента рождения планеты.
«Это четкое указание на то, что в глубокой мантии Земли есть небулярный неон. Учитывая, что он является маркером для других газов, необходимые для жизни вещества — водород, вода, углекислый газ и азот — накапливались одновременно», - прокомментировал исследование его участник Кертис Уильямс.
- В атмосфере отношения 40Ar/36Ar = 296. Для определения изотопного состава аргона в мантии Земли были исследованы подводные изверженные породы. Изучение изотопного состава аргона из толеитовых базальтов привело к обнаружению довольно широкого диапазона отношений 40Ar/36Ar - от близких к атмосферным значениям до 25000 (Ozima, Podosek, 1983). Примерно в таких же пределах менялось это отношение и в ультраосновных включениях в базальтах (Толстихин, 1986). Поскольку возможность атмосферной контаминации не вызывает сомнения, обычно в качестве типичных для мантии принимают наиболее высокие отношения 40Ar/36Ar.
Наблюдается общее закономерное увеличение содержания радиогенного аргона с глубиной (т.е. чем древнее породы, вмещающие нефть, тем больше содержание радиогенного аргона).
- В 1977 г. установлено, что изотопные аномалии по Не и Ne коррелируют с изотопными аномалиями по Аг, Кг и Хе.
Устьянцев Валерий Николаевич:
Энергия образования миерального сырья
В 1979 году С.И. Ибадуллаев и К.К. Карабаев в своей работе- «Об эволюции магматического процесса в Средней Азии», на основании фактического материала (геологическая карта Средней Азии (1976), показали эволюционную этапность магматизма в разные периоды (от протерозоя до неогена включительно) развития земной коры, и пришли к выводу, что «все известные в Средней Азии интрузивные и вулканические комплексы являются дериватами магматических процессов, проявившихся двадцать восемь раз (от протерозоя до неогена). Они представлены семнадцатью комплексами пород различного состава, генезиса и времени становления. Дифференциация магматических образований происходила в направлении: щелочные - кислые - основные - ультраосновные породы.
Частота проявления магматических комплексов варьирует от 1 до 16. Так, граниты лейкократовые, биотитовые и двуслюдяные, гранодиоты, гранито-гнейсы внедрялись 16 раз (архей-неоген); габбро, нориты, габбро-диориты, диориты - 14 раз; породы комплекса гранодиориты, кварцевые диориты, гранито-гнейсы и гранито-диорито-гнейсы - 13 раз; диориты, габбро-диориты, кварцевые диориты, кварцевые сиенито-диориты - 11 раз; дуниты, передотиты, гарцбургиты серпентинизированные - 5 раз (в кембрии, ордовике, девоне и карбоне); комплекс пород - перидотиты, пироксениты, габбро, габбро-нориты - 1раз (мел). Комплекс габбро, габбро-норитов, который соответствует "базальтам" внедрялся 14 раз (от архея до неогена включительно).
Высокой частотой внедрения отличаются комплексы пород кислого и основного состава, меньшей - серии щелочных и ультраосновных пород.
В каждом отдельно взятом периоде дифференциация осуществлялась в сторону изменения состава магмы от кислого до основного».
«Высокая магмапродуктивность, как отмечают Р. Уайт и Д. Маккензи (1995), не может быть обеспечена плавлением на уровне литосферы, а требует привнесения материала из более глубоких горизонтов мантии.
О.А. Богатиков (1985) отмечал, что «надо учитывать то обстоятельство, что более легкоплавкое вещество лейкосомы будет легче перемещаться при высокотемпературном (особенно водном) амфиболитовом метаморфизме, создавая тем самым впечатление большей древности меланосомы».
Состав слоев :
1. гранулиты — 40-50%, мигматиты и гнейсы — 20-30%, кристаллические сланцы — 10-20%, плагиоклазиты и гранитоиды — 10-15%;
2. плагиоклазиты и габбро-нориты — 50-60%, гранулиты и гнейсы — 20-30%, гранулитовые эклогиты — 10-20%;
3. серпентиниты — 20-40%, эклогитизированные породы и эклогиты — 60-80%;
4. гарцбургиты и эклогиты — до 80%, пироксениты и лерцолиты — до 15%, вебстериты и габбро — 5%;
5. аморфизованная слабо дифференциированая базальтово-пикритовая ассоциация.
«Все меняется (в геологическом масштабе времени) и меняется не хаотически, а сохраняя некоторую направленность. Постепенно вещество земной коры все более и более дифференцируется. Идет не усреднение, а пространственное разделение элементов, минералов, горных пород» (В.И. Вернадский, 1920)..
«Газы стратосферы, находящиеся наверху, очень независимы от движения вещества на земной поверхности, и хотя существует обмен между веществом этих высоких областей, веществом стратосферы и поверхности земли, этот обмен совершается крайне медленно. Несомненно, в течение геологического времени, он не будет незаметной величиной. В тропосфере количественно чувствуются отголоски геохимических обратимых процессов» (В.И. Вернадский, 1934).
Этот вывод , справедлив и для других планет Солнечной системы.
Из области ядра, исходит волна энергии, под воздействием которой вещество и его структура, подвергаются преобразованию на атомарном уровне.
Теорема доказанная И. Р. Пригожиным (1947), термодинамики неравновесных процессов:
«при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропия»
Синергетика объясняет процесс самоорганизации в сложных системах следующим образом: Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции. Самоорганизация неразрывно связана с волновыми процессами. В любых открытых, диссипативных и нелинейных системах неизбежно возникают автоколебательные процессы, поддерживаемые внешними источниками энергии, в результате которых протекает самоорганизация.
Процесс формирования месторождений минерального сырья, - антиэнтропийный. Система формирования минерального сырья— открытая, благодаря наличию тектонических нарушений в земной коре. Таким образом, главным фактором формирования месторождений являются, - тектонические нарушения. То-есть, тектонические нарушения контролируют месторождения минерального сырья.
Е = mc2
где, E - энергия системы, m - её масса, c-скорость света.
Энергия: (Е), единицы измерения, система СИ-(Дж), система СГС — (эрг).
E=mc2 — формула А. Эйнштейна, указывает на эквивалентность массы вещество и энергии. То-есть изначально энергия большого взрыва порождает вещество, которое в планетарных стационарных центрах подвергается распаду на атомарном уровне (ядерные реакции, энергию дает гелий). Хондрит: — СО, СО2 - метан - кремневодород, кремнеуглеводород — нефть+метан — водород — гелий.
Вещественный состав минерального сырья на планетах, зависит от элементов не подвергшихся распаду.
Планеты-гиганты и планеты земной группы своим плотностным характеристикам резко различны, - это есть яркое проявление процесса дифференциации вещества.
С - углистые хондриты содержат много железа, которое почти всё находится в соединениях силикатов. Благодаря магнетиту (Fe3O4), графиту саже и некоторым «органическим» соединениям углистые хондриты приобретают тёмную окраску. также содержат значительное количеств гидросиликатов (серпентин, хлорит, монтморилонит). Гидросиликаты в составе хондритов существенно влияют на их плотность.
В Солнечной планетарной системе отмечается закономерность: с удалением от Солнца, уменьшается количество тяжелых элементов, а количество легких элементов (водород, гелий, углеводород, вода и др.), увеличивается.
- Пребиотические вещества, которые образуются при облучении льда, теряют свои органические свойства и высокое содержание водорода, азота и кислорода, при нагревании более чем до 300 ºC; это происходит вблизи Солнца.
- Слишком низкие температуры предотвращают пребиотическое направление развития, в отличие от Земли.
«… Лишь часть вещества организмов собирается в виде каустобиолитов. Это только та часть которая выходит из жизненного круговорота, какая-нибудь миллионная часть химических элементов, проходящих через живое вещество.
Вся основная масса элементов удерживается живым веществом в круговороте, в поле своего действия…»
«Циклические элементы составляют почти всю массу земной коры — 99.7;%. Остающийся небольшой остаток — 0.3%, не есть ничтожная величина.
«Нахождение элементов в кремнеалюминиевых массах — сложных, вечно изменчивых системах, более или мене вязких, обладающих высокой температурой и высоким давлением переполненных газами (CH4, H2O - пары)» [В.И. Вернадский, 1934]
Благородные газы образуются в земной коре и мантии, в процессе радиоактивного распада определенных элементов, таких как уран и торий. Эти радиоактивные элементы подвергаются ядерному распаду, испуская альфа- и бета-частицы, а также гамма-излучение. В рамках этого процесса распада,образуются изотопы благородны газов, которые дают энергию, которая способствует дифференциации вмещающего вещества. Энергетическая подпитка системы способствует процессу минералообразования. УВ в том или ином количестве образуются из всех видов пород, под вод воздействием волны энергии исходящей от экзоэнергетических элементов.
Все без исключения планеты Солнечной системы, отражают механизм формирования сложной системы углеводородов и однозначно указывают на их абиогенное происхождение.
Благородные газы и их роль в развитии планетарной системы.
Отметим: «Открытие удалось сделать благодаря уникальному прибору – магнитному резонансному массспектрометру – разработанному и созданному в Ленинградском Физико-техническом институте имени А. Ф. Иоффе (он оказался в десятки тысяч раз чувствительнее лучших зарубежных спектрометров). Разработкой приборов и исследованиями по изотопии гелия руководил доктор физико-математических наук, профессор Мамырин Борис Александрович. В практической геологии изотопно-гелиевый критерий позволяет картировать рудоносные зоны (уран, литий, УВ, нефть и др.), отличать зоны действующих разломов земной коры, оценивать обстановку в сейсмически неустойчивых районах.». (Б. А. Мамырин, Г. С. Ануфриев, Л. В. Хабарин, И. Н. Толстихин, И. Л. Каменский, 1982).
- Российские ученые установили, что гелии, которыми «пропитаны» породы земной коры и породы мантии, резко отличны по изотопному составу.
В коре, в различных регионах отношение гелия3 к гелию4 может меняться в десятки и сотни раз и это отношение крайне мало.
А в гелии мантии отношение легкого изотопа к тяжелому оказалось очень стабильным и в тысячу раз больше, чем в гелии земной коры.
Это редчайший феномен природы, поскольку сдвиги в изотопном отношении для различных элементов на Земле не превышают обычно нескольких процентов. В результате изотопных анализов гелия из разнообразных природных объектов был обнаружен, первоначально в газах термальных источников Южно-Курильских островов, гелий с аномально высоким изотопным отношением Не3/Не4 = ~ (3±1) 105.
Дальнейшие исследования и анализ проб, отобранных из многих точек земного шара во всех океанах, на всех материках, на многочисленных островах, показали, что установленный факт носит глобальный характер, и в гелии, продуцируемом подкоровыми слоями Земли, отношение Не3/Не4 выше в сотни и тысячи раз, чем в гелии, генерируемом породами земной коры.
Впервые зафиксированы нейтрино вторичного термоядерного цикла Солнца. Ученые из международной коллаборации Borexino объявили о первом наблюдении нейтрино из реакций углеродно-азотного цикла в Солнце. Это экспериментально подтверждает теоретические представления о вторичном цикле термоядерного синтеза в массивных звездах. Результаты исследования опубликованы в журнале Nature. Звезды питаются энергией термоядерных реакций превращения водорода в гелий, происходящих в их недрах. Такой синтез возможен двумя путями: в протон-протонной (pp) цепи, включающей только изотопы водорода и гелия, и в ходе вторичного цикла, который еще называют углеродно-азотным, или CNO-циклом по символам углерода, азота и кислорода — элементов, выступающих катализаторами реакций. Ядерные реакции как первичного, так и вторичного цикла сопровождается испусканием характерных нейтрино. Протон-протонные цепи производят около 99 процентов энергии Солнца и сходных с ним по размерам звезд, поэтому ранее ученым удавалось наблюдать только нейтрино из рр-цикла. Но считается, что у тяжелых звезд, с массой в полтора раза и более массивнее Солнца, преобладает углеродно-азотный цикл, и важно было экспериментально доказать его существование. Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию о ядерных процессах в глубинах звезды и условиях их протекания. Зафиксировать среди солнечных нейтрино те, которые относятся к вторичному циклу было очень сложной задачей, так как их сигнал не намного превышал фоновый. Но ученым коллаборации Borexino это удалось. "До недавнего времени оставался открытым вопрос, удастся ли зарегистрировать нейтрино из CNO-цикла. Регистрацию CNO-нейтрино, помимо малости самого потока, осложняет присутствие спектральной компоненты природного фона, неотличимой от их спектра", — приводятся в пресс-релизе Оъединенного института ядерных исследований в Дубне слова одного из участников эксперимента, старшего научного сотрудника Лаборатории ядерных проблем им. В.П. Джелепова ОИЯИ Олега Смирнова. Свойство беспрепятственно проникать сквозь вещество позволяет нейтрино сохранять информацию о внутренних процессах в Солнце, но это же свойство делает их неуловимыми для обычных детекторов частиц. Поэтому для регистрации нейтрино используют специальные детекторы очень большой массы с тщательным контролем всех процессов, которые могут отражать взаимодействия нейтрино с электронами. В тех редких случаях, когда нейтрино взаимодействует с электроном, он передает ему часть своей энергии. Этот процесс напоминает упругое столкновение бильярдных шаров. Электрон, получив некоторую начальную скорость, постепенно теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов. Таким образом, взаимодействие нейтрино с электроном приводит к вспышке света, и несколько тысяч фотонов разлетаются от точки взаимодействия во все стороны. Эти фотоны регистрируют тысячи детекторов света, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, а также определить точку, где произошло взаимодействие. В сверхчувствительном детекторе Borexino, расположенном в самой большой подземной лаборатории в мире в Гран-Сассо в Центральной Италии, в качестве активной среды для регистрации нейтрино используется около 100 тонн жидкого сцинтиллятора. "Несмотря на огромное количество солнечных нейтрино, проходящих через детектор (более секстиллиона за день) только полсотни нейтрино оставляют заметный "след" в детекторе за это же время. Ученые, работающие над анализом данных, смогли выделить сигнал, который можно объяснить только присутствием нейтрино из CNO-цикла. Таким образом доказано протекание ядерных реакций CNO-цикла в Солнце. Полный поток нейтрино из CNO-цикла составляет около одного процента от полного потока солнечных нейтрино", — поясняет Олег Смирнов. Открытие имеет первостепенное значение для астрофизики, так как в звездах более массивных, чем Солнце, энергия выделяется в основном за счет углеродно-азотного цикла. Его механизм теперь экспериментально подтвержден. Ядро Солнца — гигантский термоядерный реактор. В процессе ядерных трансформаций при температуре около 15 миллионов градусов протоны сливаются друг с другом и образуют гелий. Гелий нарабатывается в двух многостадийных процессах: в протон-протонной (pp) цепочке и в углеродно-азотном (CNO) цикле. Часть ядерных реакций сопровождается испусканием нейтрино. Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию как о ядерных процессах в глубинах Солнца, так и об условиях их протекания. Хотя поток солнечных нейтрино огромен и исчисляется миллиардами частиц на квадратный сантиметр в секунду, регистрация неуловимых нейтрино представляет собой чрезвычайно сложную экспериментальную задачу». Доказательство прохождения реакций углеродно-азотного цикла в Солнце является важным научным достижением, шагом на пути к разрешению загадки его химического состава. Поскольку поток нейтрино, генерируемый в CNO-цикл, напрямую связан с концентрацией элементов C, N и O, участвующих в реакциях, то измерение потоков этих нейтрино напрямую связано с химическим составом Солнца.
Устьянцев Валерий Николаевич:
- Неон : Неон имеет атомный номер 10 в периодической таблице элементов. Неон имеет более высокую атомную массу, чем азот и кислород, но они встречаются только в виде молекул. Этот благородный газ известен, в частности, из осветительной техники. Однако он также используется в качестве хладагента в холодильной технике.
Неон находят повсюду - на Земле, в небесах и на море. Наибольшая концентрация его в атмосфере - 0,00182% по объему. А всего на нашей планете около 6,6·1010 т неона. У элемента №10 три стабильных изотопа: 20Ne, 21Ne и 22Ne. Повсеместно преобладает легкий 20Ne. В воздушном неоне его 90,92%, на долю 21Ne приходится 0,257%, а на долю 22Ne — 8,82%. Среднее содержание неона в земной коре мало - всего 7·10-5 г/т.
В изверженных породах, составляющих основную массу литосферы, около 3 млрд. т неона. Отсюда, по мере разрушения пород, неон улетучивается в атмосферу. В меньшей мере атмосферу снабжают неоном природные воды. Неон - самый малочисленный обитатель Земли из всех элементов своего периода. Это характерно для всех инертных газов, несмотря на то, что элементам с четными номерами обычно присуща большая распространенность. «Земная» диаграмма резко контрастирует с «космической»: в газовых туманностях и некоторых звездах неона в миллионы раз больше, чем на Земле. Концентрация неона в мировой материи неравномерна, в целом же по распространенности во Вселенной он занимает пятое или шестое место. Неон обильно представлен в горячих звездах - красных гигантах, в газовых туманностях, в атмосфере внешних планет солнечной системы - Юпитера, Сатурна, Урана, Нептуна. В 1974 г. американский астроном М. Харт установил, что атмосфера далекого Фото УранаПлутона в нижних слоях примерно так же плотна, как земная. Учитывая низкую температуру атмосферы Плутона (около 40°К), Харт вычислил, что в этой атмосфере преобладает неон. Причину неоновой бедности нашей планеты ученые усматривают в том, что некогда Земля потеряла свою первичную атмосферу, которая и унесла с собой основную массу инертных газов. Они ведь не могли, как кислород и другие газы, химически связаться с Нептуна другими элементами в минералы и тем самым закрепиться на планете.
Американские ученые выдвинули версию образования планеты Земля (источник: https://ria.ru/20181207/1547581979.html). Исследованиями на эту тему занимались специалисты Калифорнийского университета в Дэйвисе. Ученые проанализировали соотношение изотопов неона, захваченных мантией Земли во время формирования планеты. Образцы экспедиция под руководством специалистов из Университета Род-Айленда достала образцы со дна Атлантики. На этот благородный инертный газ, в отличие от водяного пара, углекислого газа или азота, не влияют химические и биологические процессы. По словам одного из авторов исследования, профессора Суджоя Мукхопадхая, в силу этого свойства неона он навсегда сохраняет информацию о своем происхождении.
Ученые выделили три изотопа — неон-20, 21 и 22. Все они стабильны и не радиоактивны, однако неон-21 образуется при радиоактивном распаде урана. Таким образом, количество неона-20 и неона-22 остается неизменным с момента рождения планеты. Существуют три основные гипотезы о происхождении нашей планеты.
Одна предполагает, что Земля росла сравнительно быстро - от двух до пяти миллионов лет. при этом планета захватывала необходимые для жизни воду и газы из окружающего молодое Солнце облака. Согласно другой гипотезе, небесные тела - планетезимали - образовались под облучением Солнца из частиц пыли. Они стали источником нужных соединений. Согласно третьей теории Земля развивалась медленно и за счет богатых водой, кислородом и азотом метеоритов. Отсюда исследователи делают вывод, что для каждой из трех теорий формирования Земли должно быть характерно собственное соотношение изотопов 20 и 22. Чтобы определить этот коэффициент, исследователи изучили образцы подушечной лавы. Эти стекловидные породы формируются при подводных или подледных извержениях. Исследователи разрушили породы в герметичной камере и проанализировали состав газов. Они получили соотношение изотопов неона для трех гипотез о происхождении Земли. Выяснилось, что коэффициент, соответствующий теории «мантии Земли», выше, чем у «гипотезы планетезималей» и модели «долгого развития».
«Это четкое указание на то, что в глубокой мантии Земли есть небулярный нео. Учитывая, что он является маркером для других газов, необходимые для жизни вещества — водород, вода, углекислый газ и азот — накапливались одновременно», - прокомментировал исследование его участник Кертис Уильямс». ( ysical RevPiew Letters).
- Аргон : Аргон имеет атомный номер 18. В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия - элементов, весьма распространенных на Земле. Для аргона и других инертных газов (кроме гелия) "закрыты" пути из атмосферы: отсутствуют как диссипация в космическое пространство, так и консервация в связанном состоянии в пределах коры. Выделившиеся из твердой Земли инертные газы накапливаются в атмосфере, что приводит к их относительно высоким концентрациям и к сильной контаминации, доступных наблюдению частей земной коры атмосферными компонентами.
В атмосфере отношения 40Ar/36Ar = 296. Для определения изотопного состава аргона в мантии Земли были исследованы подводные изверженные породы. Изучение изотопного состава аргона из толеитовых базальтов привело к обнаружению довольно широкого диапазона отношений 40Ar/36Ar - от близких к атмосферным значениям до 25000 (Ozima, Podosek, 1983). Примерно в таких же пределах менялось это отношение и в ультраосновных включениях в базальтах (Толстихин, 1986). Поскольку возможность атмосферной контаминации не вызывает сомнения, обычно в качестве типичных для мантии принимают наиболее высокие отношения 40Ar/36Ar.
О радиогенном происхождении аргона в составе природного и нефтяного газа. Л.М. Кушко. Дальнейшие исследования показали, что не все минералы прочно удерживают радиогенный аргон. Например, древние микроклин-пертиты теряют в среднем 25% аргона. Не исключена возможность, что имеются минералы, теряющие еще большее количество аргона. Несмотря на то, что содержание изотопа калия К40 в составе калия весьма незначительно (лишь 0,0119%) и только в 11,2% К40 происходит так называемый калий-захват, приводящий к образованию изотопа аргона Аr40, все-таки значительное распространение калия в литосфере (по расчетам А.Е. Ферсмана содержание калия составляет 0,15% массы Земли) увеличивает значение калия в образовании радиогенного аргона. Например, количество изотопа Аr40 в аргоне, находящемся в калийной руде, в 3 раза превышает его содержание в аргоне атмосферы. В 1959 г. Э.К. Герлинг по нашей просьбе в связи с исследованиями редких газов в институте КуйбышевНИИНП произвел анализы аргона из газа некоторых нефтяных и газовых месторождений Куйбышевской и Оренбургской областей на изотопный состав.
Пробы попутного и природного газа выбирались таким образом, чтобы получить результаты по разрезу многопластового месторождения и одновременно охватить все основные продуктивные горизонты нефти и газа. Из приведенных данных видно, что в аргоне, содержащемся в природных газах пермской системы, исключая газ Жуковского месторождения, радиогенный аргон не обнаружен.
В.А. Кротова:
1. Колебания процентного содержания радиогенного аргона на фоне общего роста его количества с глубиной можно объяснить различной газонасыщенностью нефтей.
2. Наблюдается общее закономерное увеличение содержания радиогенного аргона с глубиной (т. е. чем древнее породы, вмещающие нефть, тем больше содержание радиогенного аргона).
- Криптон : Криптон имеет атомный номер 36. Криптон является частью нашей атмосферы. Из-за низкой концентрации около 1,1 мл / м 3. Более четкую картину того, как сформировалась наша планета, получили ученые при помощи криптона — благородного газа из мантии Земли, собранного в геологических горячих точках Исландии и Галапагосских островов, согласно новому исследованию Калифорнийского университета в Дэвисе, опубликованному 15 декабря в журнале Nature.
«Результаты показали, что летучие элементы Земли — такие как углерод, вода и азот, — поступали по мере того, как Земля росла и становилась планетой.
Исследователи обнаружили, что химический отпечаток криптона в глубокой мантии очень похож на примитивные, богатые углеродом метеориты, которые, возможно, были доставлены из холодных, отдаленных уголков Солнечной системы. Но предыдущие работы других ученых показала, что неон, еще один благородный газ в глубокой мантии, был получен от солнца. Два разных результата предполагают, по крайней мере, два различных источника летучих веществ в мантии Земли, появившихся очень рано в ее истории. Исследователи также отметили меньшее количество редкого изотопа Kr-86 в глубокой мантии по сравнению с известными метеоритами. Дефицит Kr-86 говорит о том, что только известные метеориты могут не учитывать весь криптон мантии.
- В 1977 г. установлено, что изотопные аномалии по Не и Ne коррелируют с изотопными аномалиями по Аг, Кг и Хе.
«В органической химики называют такие химические вещества, молекулы которых содержат атомы углерода, связанные с другими химическими элементами. Это могут быть как небольшие молекулы вроде простейших углеводородов или спиртов, так и намного более сложные. И самое главное, «органика» совсем не обязательно имеет биологическое происхождение: органические молекулы могут образовываться из неорганических веществ и реагировать друг с другом без какого-то бы ни было участия жизни» ( Максим Абаев).
Устьянцев Валерий Николаевич:
Комета Чурюмова – Герасименко.
2015 На комете 67Р (Чурюмова – Герасименко), богата органическими соединениями. Однако ни орбитальный аппарат Rosetta, ни зонд Philae не были оборудованы приборами, позволяющими искать следы жизни. Средний состав найденных молекул можно описать формулой C1H1,56O0,134N0,046S0,017, что идентично растворимому органическому веществу из хондритных метеоритов и включает в себя множество цепочечных, циклических и ароматических углеводородов в примерном соотношении 6:3:1. Некоторые молекулы были впервые достоверно обнаружены в коме комет — это нонан (C9H20), нафталин (C10H8), бензиламин (C7H9N), бензойная кислота (C7H6O2), этилен (C2H4) и пропен (C3H6). За два года нашли на ней ксенон, иней, прекусоры сахаров, высокомолекулярные «органические» вещества, не обычные скалы, увидела смену окраски ядра и в комемете, а также впервые в истории высадила на комету зонд «Филы» (Александр Войтюк). Космический аппарат «Rosetta» впервые однозначно обнаружил твердое «органическое» вещество в виде сложных углеродсодержащих молекул».
Навигация
Перейти к полной версии