Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
Ультрафиолетовое излучение протосолнца.
Как сообщает «Universe Today», сотрудник университета штата Калифорния в Сан-Диего Винай Рай (Vinai Rai), занимавшийся изучением метеоритов в лаборатории д-ра Марка Тименса, разработал чрезвычайно чувствительный метод анализа их химического состава.
С его помощью удалось обнаружить следы воздействия высокоэнергетичных частиц и ультрафиолетового излучения на некоторые изотопы сульфида, содержащиеся в метеоритах.
Единственным сохранившимся до наших дней источником данных о химическом составе протопланетного облака являются некоторые метеорные тела, которые провели миллиарды лет на окраинах Солнечной системы, а затем, под воздействием гравитационных возмущений, оказались вблизи Земли и упали на ее поверхность.
После обнаружения небольшого избытка изотопа серы S-33 в исследуемых метеоритах у ученых не осталось сомнения в том, что замеченные ими фотохимические процессы происходили в до солнечной туманности еще до того, как окончательно сформировалась центральная звезда. Анализ определил интенсивность протосолнечного ветра, что, в свою очередь, дало возможность оценить интенсивность излучения протосолнца.
Т.о., получено доказательство того, что облако газа и пыли, из которого впоследствии образовалось Солнце, само являлось источником ультрафиолетового излучения и высокоэнергетичных частиц еще до того как стало звездой. Излучение «протосолнца» оказало существенное влияние на формирование химического состава Солнечной системы, включая синтез многих органических соединений, из которых впоследствии возникла жизнь на Земле.
«Наши измерения впервые однозначно свидетельствуют о том, что протосолнечный шар испускал достаточно ультрафиолетового излучения, чтобы вызвать фотохимические реакции в окружающей его материи», - говорит д-р Тименс.
«Иначе говоря, наше Солнце разгоралось постепенно в течение сотен миллионов лет до того момента, когда оно вспыхнуло на полную мощь. Этот факт, без сомнения, окажет большое влияние на понимание того, как из первичной материи образовались более сложные соединения еще до возникновения крупных тел Солнечной системы. В частности, наше открытие подтверждает теоретическое предположение о том, что центральная часть вращающейся протопланетной туманности была источником заряженных высокоэнергетичных частиц, аналога «солнечного ветра», которые «выдули» остальную часть материи облака на периферию аккреционного диска, где и сформировались остальные члены нашей планетной системы». Марк Тименс считает, что при помощи изобретенной в его лаборатории техники химического анализа в будущем станет возможным определить, где и когда впервые возникли различные соединения под воздействием первичного «солнечного» ветра». (Тименс).
«Генезис» был запущен в августе 2000-го года, добрался до одной из точек Лагранжа (в которых силы притяжения от Солнца и Земли уравновешены), находящейся примерно в полутора миллионах километров от нас, и пробыл там 886 дней, накапливая на поверхности коллектора молекулы крайне разреженного солнечного ветра. 8 сентября 2004-го года «Генезис» вернулся на Землю и, несмотря на жесткую посадку, вызванную неисправностью в парашютной системе, благополучно доставил драгоценный солнечный ветер. После 1972 года, когда астронавты миссии «Аполлон» доставили на Землю образцы лунного грунта, это была вторая в мире возможность изучить вещество, добытое вне Земли.
Масс-спектрометрический анализ атомов и изотопов азота и кислорода показал:
- в атмосфере Земли (равно как в веществе Луны и исследованных метеоритов) содержится несколько меньшая относительная концентрация кислорода 16О и несколько большая концентрация его редких изотопов 17О и 18О, чем в веществе солнечного ветра.
А вещество солнечного ветра, есть вещество, из которого состоят внешние слои Солнца, которое, как сегодня считается, осталось неизменным с момента рождения светила.
Почти 100% азота в Солнечной системе представлено изотопом 14N, и лишь незначительное исключение составляет изотоп 15N.
Анализ образцов показал, что по сравнению с атмосферой Земли вещество Солнца и Юпитера содержит на 40% меньше изотопа 15N, чем азот земного воздуха, причем относительное содержание 14N и 15N у Юпитера и Солнца совпадают.
Солнце содержит более 99% массы всей Солнечной системы.
Протопланетное облако, их создавшее имело тот же состав, что и Солнце.
Французский астрофизик Бернар Марти (Bernard Marty) из Центра геохимических и петрографических исследований в Нанси, один из соавторов открытия, считает, что обнаруженная их группой неоднородность в изотопном составе кардинально изменит наши представления о том, как формировалась Солнечная система.
Используя рентгеновскую обсерваторию «Чандра», группа ученых изучила способности к вспышкам звезд, напоминающих Солнце, каким оно было в эпоху образования планетной системы. Полученная обсерваторией информация указывает на гораздо большую вспышечную активность, чем предполагалось, и это может объяснить наличие в метеоритном веществе некоторых необычных изотопов.
Присутствие изотопных аномалий в метеоритах привело к теории, утверждающей, что очень близко от протопланетного облака, из которого впоследствии сформировалась Солнечная система, произошел взрыв сверхновой. Это событие спровоцировало сжатие облака и привнесло в него короткоживущие изотопы.
Солнечные вспышки могут быть источником таких изотопов, но для этого вспышки должны быть в сотни тысяч раз более мощными и происходить в сотни раз чаще.
Область звездообразования в Туманности Ориона содержит несколько десятков молодых звезд с характеристиками схожими с характеристиками Солнца. Исследователи изучили происходящие с этими звездами вспышки и обнаружили, что уровень рентгеновского излучения практически во всех вспышках очень высок. Мощность и частота вспышек, происходящих с находящимися в Туманности Ориона молодыми аналогами Солнца, достаточны для того, чтобы создать большинство изотопов, обнаруженных в метеоритах, сформировавшихся в начале жизни планетной системы.
Группа из университета штата Пенсильвания, работавшая с «Чандрой», показала, что звездные вспышки ускоряют производство радиоактивных ядер, хотим мы этого или нет. Теперь ученых интересует вопрос - достаточно ли только воздействия вспышек на протопланетное облако для образования наблюдаемого количества изотопов или же наряду с этим процессом происходило внесение изотопов из межзвездного пространства.
Самой распространенной гипотезой формирования изотопных аномалий является предположение о существовании неких «реликтовых» фрагментов относительно нашей Солнечной системы. В свое время мы связывали изотопные аномалии в метеоритах со вспышкой Сверхновой звезды в окрестностях будущей Солнечной системы. Примерно о том же говорит и более поздняя гипотеза О. К. Мануэля и его коллег (1972 г.), предполагающая, что изотопные аномалии ксенона в углистых хондритах обусловлены смесью г- и р-продуктов, которые добавились в Солнечную систему от ближайшей Сверхновой.
Позднее, в 1977 г. установлено, что изотопные аномалии по Не и Ne коррелируют с изотопными аномалиями по Аг, Кг и Хе, а сама гипотеза была несколько модернизирована. Сверхновая была помещена в центр будущей Солнечной системы. Солнце, таким образом,— остаток Сверхновой, а различные ее слои пошли на строительство конденсатов и метеоритов различных типов. Получив корреляцию между изотопными аномалиями ксенона и теллура в углероде метеорита Альенде, Р. Баллард со своими коллегами в 1978 г. отмечает, что наблюдается большое обогащение нейтронно-богатыми и нейтронно-дефицитными изотопами в обоих элементах. По-видимому, в этом «виновен» способ нуклеосинтеза, а не накопление продуктов деления трансуранов. Эти исследователи приходят к выводу, что планетарный материал конденсировался из облака, состоящего из гетерогенного материала последовательно сбрасываемых оболочек Сверхновой.
Смысл различных способов нуклеосинтеза одного и того же элемента в звездах весьма проблематичен. Тем более рискованно конструировать синтез элементов с различным изотопным составом в пределах одной Сверхновой звезды, как это делает О. К. Мануэль. Наблюдаемые вариации изотопного состава стабильных элементов в метеоритах с этой точки зрения не показательны. Они с таким же успехом, например, могут быть объяснены физическим и химическим масс-фракционированием как при охлаждении первичной плазмы, так и во время роста пылевых частиц в протопланетном газовом облаке.
Другое дело, если наблюдается изотопное смещение в радиоактивных или радиогенных элементах (уран, свинец, стронций, аргон) или отмечаются избытки стабильных продуктов распада «вымершей» радиоактивности (в палладии, ксеноне, магнии и т. д.). Для многоизотопных элементов невозможно придумать механизм масс-фракционирования, который приводил бы к обогащению каким-либо одним изотопом, оставляя остальные в покое; в этом случае мы не можем не принять во внимание возможное сохранение в пределах Солнечной системы некоего реликтового.
Устьянцев Валерий Николаевич:
«Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом энергии, поэтому она представляет особый интерес для управляемого термоядерного синтеза» (Климов А.Н.).
Радиоактивный распад элементов в коре, является источником гелия, а также аргон-40, образующегося в результате распада слаборадиоактивного природного изотопа калий-40.
«… радиогенная мощность распадов тяжелых элементов, составляет около 16 ТВт, что составляет примерно половину от общей измеренной скорости рассеивания тепла Землёй» С. Казарян, 2019).
«Тепловая энергия у границы ядро-мантия составляет 6 ТВт, из которой 1 ТВт еобразуется в гидромагнитную энергию ядра» С.В. Старченко, 2009).
Устьянцев Валерий Николаевич:
Несмотря на то, что нефть залегает в различных геологических условиях, элементный состав её колеблется в узких пределах, что указывает на единый мантийный источник ее образования. Этот факт указывает на единый источник энергии, - стационарный энергетический центр первого рода (СЭЦ), который ответстсвенен за синтез минерального сырья. Из области ядра, исходит волна энергии, под воздействием которой вещество и его структура, подвергается преобразованию на атомарном уровне.
«Повсеместное присутствие избыточного гелия-3 в мантийных породах доказывает, что Земные недра все еще дегазируют первичные летучие элементы» .(Буйкин А.И., 2005).
«Одновременное проявление (по В.В. Белоусову, 1975), на поверхности материков различных эндогенных режимов, «указывает на гетерогенность теплового поля Земли: в одно и то же время тепловые потоки в разных местах разнятся по своей интенсивности, следовательно, тепловые потоки меняют свою интенсивность как в пространстве, так и во времени».
С.П. Максимов, 1977, показал связь тектонических циклов и процессом накопления нефти и газа - тектоническая цикличность оказывает влияние на миграцию УВ. Тектоническая обстановка является фактором контролирующим пути направления и скорость миграции УВ.
Закономерно-стабильное соотношение углерода и водорода (С/Н) на всех месторождениях нефти и газа мира, есть надежный показатель мантийного происхождения нефти и газа.
Состав вещества верхней мантии, - углистые хондриты.
Нефть (пары нефти), - синтез происходил в условиях мантии системы Земли, имеет стабильное среднее соотношение: C/Н = 6.47, n = более 50.
В.И. Вернадский, 1934 о гелии:
«Все нахождения связаны с нефтяными месторождениями и с углеводородными газами их сопровождающими. Во всех месторождениях есть возможность констатировать или массивы более богатых рассеянными ураном и торием кислых гранитных пород или их разрушения — детритовых пород, которые могут явиться источником гелия»
«Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом энергии, поэтому она представляет особый интерес для управляемого термоядерного синтеза» (Климов А.Н.).
Радиоактивный распад элементов в коре, является источником гелия, а также аргон-40, образующегося в результате распада слаборадиоактивного природного изотопа калий-40.
«… радиогенная мощность распадов тяжелых элементов, составляет около 16 ТВт, что составляет примерно половину от общей измеренной скорости рассеивания тепла Землёй» С. Казарян, 2019).
«Тепловая энергия у границы ядро-мантия составляет 6 ТВт, из которой 1 ТВт еобразуется в гидромагнитную энергию ядра» С.В. Старченко, 2009).
Сила тяжести направлена к центру системы, в связи с чем планета приобрела шарообразную форму, при этом, первичные абиогенные нефти и УВ, легкоплавкие, легко летучие элемент и их соединения были вытеснены в земную кору магматического происхождения. Область ядра менее дегеазирована.
Подъемная (выталкивающая) сила Архимеда. «Плотность газовой смеси (водород-метан, пары нефти) даже при давлении мантии будет меньше плотности воды. А вот плотность самой мантии превышает плотность воды более чем в три раза. Значит, подъемная сила газовой смеси объемом в 1 кубический километр составит 2,5 миллиарда тонн И к тому же этот газ раскален до 600-8000 С» (Портнов, 1999).
«Мантийная нефть локализуется в земной коре,так-как:
Плотность: «Осадочные породы — 2.4-2.5 г/см3; гранитов и большинства метаморфических пород — 2.7 г/см3; основных изверженных пород — 2.9 г/см3. Средняя плотность земной коры — 2.8 г/см3. Средняя плотность Земли составляет 5.52 г/см3.» (Белоусов,1975).
Осадочный слой является производным разложения алюмосиликатов, - изверженных пород, с которыми связывается синтез нефти и сопровождающих ее газов, т.е., нефть, - минерал абиогенного происхождения.
Теорема доказанная И. Р. Пригожиным (1947), термодинамики неравновесных процессов:
«при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропии».
«Между главными сейсмическими рубежами и рубежами минеральных преобразований, есть хорошее согласование (корреляция), на глубинах:
410, 520, 670, 840, 1700, 2000, 2200-2300 км) (
1. На рубеже 670 км, шпинелеподобный рингвудит трансформируется в ассоциацию:
железо - магниевого перовскита и магнезиовюстита.
2. На рубеже 850-900 км, пироп (магниево-алюминиевый силикат), преобразуется в ромбический перовскит (железо-магниевый силикат) и твердый раствор корунд-ильменита.
3. На рубеже 1700 км. происходит изменение свойств различных кристаллов.
4. На глубине 2000 км, фиксируется образование плотных модификаций кремнезема и начинаются структурные изменения вюстита.
5. На глубине 2200-2300 км, происходит структурная трансформация корунда» [Ю.М. Пущаровский].
Системы глубинных разломов контролируют миграцию вещества в системе Земли, расположение источников энергии и формирование архитектуры тектоносферы.
Волновой механизм концентрации минерального сырья в блоках земной коры:
1. Автоколебательная система Земли и генетически с ней связанная иерархия автоколебательных систем второго рода (структурные элементы), определяют существование единого механизма, под воздействием которого происходит концентрация всех типов минерального сырья (фактор - благоприятные РТ условия).
2. Минеральное сырье (любого типа), приурочено к интенсивно дислоцированным толщам — зонам сжатия (рассланцевания), а в их пределах — к локальным областям растяжения (трещинно-брекчиевым структурам). При этом многократная смена условий сжатия условиями растяжения, способна приводить к высокой концентрации минерального сырья.
Механизм работает под воздействием автоколебательной системы Земли.
Временной разрыв между магматизмом и постмагматическим рудообразованием, указывает на то, что система Земли, изначально была структурирована волной энергии.
«Синергетика объясняет процесс самоорганизации в сложных системах следующим образом: Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции. Самоорганизация неразрывно связана с волновыми процессами. В любых открытых, диссипативных и нелинейных системах неизбежно возникают автоколебательные процессы, поддерживаемые внешними источниками энергии, в результате которых протекает самоорганизация» (И.Р. Пригожин).
Процесс формирования месторождений минерального сырья, - антиэнтропийный. Система формирования минерального сырья— открытая, благодаря наличию тектонических нарушений в земной коре. Таким образом, главным фактором формирования месторождений являются, - тектонические нарушения. То-есть, тектонические нарушения контролируют месторождения минерального сырья.
Устьянцев Валерий Николаевич:
Сапропль не рассматриатиривается В.И. Вернадскиким (1934), как нефть, не рассматриваются и коротко живущиие элементы.
Неустойчивая природная (60 км.) геохимическая система кремневодородов, является важнейшим звеном в формировании вещественного состава системы Земли и ее минералогических ассоциаций. В данном процессе, несомненно большую роль играет иерархия волн энергии исходящих от локальных, региональных и глобальных источников энергии, которые стационарно, закономерно располагаются в пространстве системы Земли.
Кремневодород как неустойчивое соединение, является связующим звеном в процессе синтеза устойчивого соединения — абиогенного углеводорода.
«Между главными сейсмическими рубежами и рубежами минеральных преобразований, есть хорошее согласование (корреляция), на глубинах:
410, 520, 670, 840, 1700, 2000, 2200-2300 км).
1. На рубеже 670 км, шпинелеподобный рингвудит трансформируется в ассоциацию:
железо - магниевого перовскита и магнезиовюстита.
2. На рубеже 850-900 км, пироп (магниево-алюминиевый силикат), преобразуется в ромбический перовскит (железо-магниевый силикат) и твердый раствор корунд-ильменита.
3. На рубеже 1700 км. происходит изменение свойств различных кристаллов.
4. На глубине 2000 км, фиксируется образование плотных модификаций кремнезема и начинаются структурные изменения вюстита.
5. На глубине 2200-2300 км, происходит структурная трансформация корунда» [Ю.М. Пущаровский].
Устьянцев Валерий Николаевич:
Сила тяжести направлена к центру системы, в связи с чем планета приобрела шарообразную форму, при этом, первичные абиогенные нефти и УВ, легкоплавкие, легко летучие элемент и их соединения были вытеснены в земную кору магматического происхождения. Область ядра менее дегеазирована.
Подъемная (выталкивающая) сила Архимеда. «Плотность газовой смеси (водород-метан, пары нефти) даже при давлении мантии будет меньше плотности воды. А вот плотность самой мантии превышает плотность воды более чем в три раза. Значит, подъемная сила газовой смеси объемом в 1 кубический километр составит 2,5 миллиарда тонн И к тому же этот газ раскален до 600-8000 С» (Портнов, 1999).
«Мантийная нефть локализуется в земной коре,так-как:
Осадочный слой является производным разложения алюмосиликатов, - изверженных пород, с которыми связывается синтез нефти и сопровождающих ее газов, т.е., нефть, - минерал абиогенного происхождения.
Связующим звеном геопроцессов, является волна энергии.
Е = mc2
где, E - энергия системы, m - её масса, c - скорость света.
Энергия: (Е), единицы измерения, система СИ-(Дж), система СГС — (эрг).
E=mc2 — формула А. Эйнштейна, указывает на эквивалентность массы вещество и энергии.
Теорема доказанная И. Р. Пригожиным (1947), термодинамики неравновесных процессов:
«при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропии».
«Между главными сейсмическими рубежами и рубежами минеральных преобразований, есть хорошее согласование (корреляция), на глубинах:
410, 520, 670, 840, 1700, 2000, 2200-2300 км) (
1. На рубеже 670 км, шпинелеподобный рингвудит трансформируется в ассоциацию:
железо - магниевого перовскита и магнезиовюстита.
2. На рубеже 850-900 км, пироп (магниево-алюминиевый силикат), преобразуется в ромбический перовскит (железо-магниевый силикат) и твердый раствор корунд-ильменита.
3. На рубеже 1700 км. происходит изменение свойств различных кристаллов.
4. На глубине 2000 км, фиксируется образование плотных модификаций кремнезема и начинаются структурные изменения вюстита.
5. На глубине 2200-2300 км, происходит структурная трансформация корунда» [Ю.М. Пущаровский].
Системы глубинных разломов контролируют миграцию вещества в системе Земли, расположение источников энергии и формирование архитектуры тектоносферы.
Атомы углерода отличаются от атомов других элементов тем, что способны образовывать устойчивые химические связи друг с другом. Они могут связываться в цепи разной длины. Цепи бывают линейные и разветвлённые. Атомы углерода соединяются также в циклы разной величины.
На Земле существует более чем 40 000 нефтяных и газовых месторождений мира всех размеров. Из этих месторождений 94 процента сосредоточены менее чем в 1500 гигантских и крупных природных скоплениях происхождение которых практически одинаково.
«Корниловская свита (C2 b-m) Тмах> 465ᵒC. Формация Ombilin (N1) небол»»ьшого бассейна Ombilin на западе Центральной Суматры (Индонезия) Т мах = 435-4470 С» (Киселева, 2017).
Вид соединения Температура (°C)
Метан (CH4) ~1000
Газообразный гидрокарбон Комнатная температура
Этилен (C2H4) Выше 1000
Этанол (C2H6O) 300-400 — несовместим с биовеществом.
Таким образом, температура играет решающую роль в процессе образования водородного соединения с углеродом и определяет как вид образовавшегося соединения, так и его характеристики. Правильное выбора температурного режима является одним из ключевых факторов для успешного формирования водородного соединения с углеродом в заданных условиях. Компонентный состав газа: азот + редкие; гелий, % 10,36; метан, % 39,64; этан, % 22,28; пропан, % 18,93; изобутан, % 1,74; н. бутан, % 4,36; изопентан, % 0,67; н. пентан, % 0,65; пексан, % 0,46; сероводород, % 0,02; углекислый газ, % 0,89; плотность газа, кг\м3 1,2398 .
В нефти земной коры есть: пиридины, пиперидины, хинолины, изохинолины, бензохинолины, акридины.
Анилины в нефти. Индолы и карбазолы нефти:
Анилины в нефти.
К слабоосновным азотсодержащим соединениям в нефти относятся анилины, амиды, имиды и N-циклоалкилпроизводные, имеющие в пиррольном кольце в качестве заместителя алкильные, циклоалкильные и фенильные группы:Пиролы.
В составе сырых нефтей и прямогонных дистиллятов чаще всего обнаруживаются производные пиридина. С увеличением температуры кипения фракций обычно возрастает содержание азотсодержащих соединений, при этом изменяется их структура: если в легких и средних преобладают пиридины, то в более тяжелых - их полиароматические производные, а в продуктах термической переработки при повышенных температурах в большей степени присутствуют анилины. В светлых фракциях доминируют азотистые основания, а в тяжелых фракциях, как правило, - нейтральные азотсодержащие соединения.
индолы (бензпироллы), карбазолы, 1,10-фенантролин, феназин, тиазолы, бензтиазолы, пиперидоны, хинолоны.
Порфирины в нефти.
Порфирины
в нефти являются типичными примерами нативных нефтяных комплексных соединений. Порфирины с ванадием в качестве координационного центра (в форме ванадила) или никелем. Ванадилпорфирины нефти - в основном гомологи двух рядов: алкилзамещенных порфиринов с различным суммарным числом атомов углерода в боковых заместителях порфинового цикла и порфиринов с дополнительным циклопентеновым кольцом. Металлпорфириновые комплексы присутствуют в природных битумах до 1 мг/100 г, а в высоковязких нефтях - до 20 мг/100 г нефти. При исследовании характера распределения металлпорфириновых комплексов между составными частями нефтяной дисперсной системы (НДС) в работе методами экстракции и гель-хроматографии установлено, что 40% ванадилпорфиринов сосредоточено в дисперсных частицах (примерно поровну в составе ядра и сольватного слоя), а оставшаяся их часть и никель-порфирины содержатся в дисперсионной среде. Ванадилпорфирины в составе асфальтенов вносят значительный вклад в поверхностную активность нефтей, при этом собственная поверхностная активность асфальтенов невелика. В меньшей степени изучено влияние металлпорфиринов на дисперсное строение нефти и условия протекания фазовых переходов в нефтяных системах. Есть данные об их отрицательном влиянии наряду с другими гетероатомными компонентами на каталитические процессы нефтепереработки. Помимо этого, они должны сильно влиять на кинетику и механизм фазовых переходов в нефтяную дисперсную систему» (википедия).
Навигация
Перейти к полной версии