Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
Механизм поступления в верхнюю мантию литофильных элементов
Теория Б.Г. Лутца.
Механизм основан на представлении о кислотном магматическом выщелачивании. В мантии содержится вода, но вместе с тем, в связи с сильно восстановительной обстановкой, там содержится и свободный водород, большая часть которого уходит в атмосферу. Наличие водорода ведет к кислотному режиму водных растворов и они поглощают щелочи из окружающей среды и ими обогащаются. Но, по мере подъема растворов водород окисляется и частично улетучивается. В результате кислотность растворов снижается и, проходя через верхние слои мантии, они начинают растворять кислотные компоненты, в первую очередь кремнезем, а также редкие земли и радиоактивные элементы. Теперь глубинные растворы приобретают тот состав (щелочи, кремнезем, РАЭ и РЗЭ), который необходим для процессов гранитизации и регионального метаморфизма. Результатом окисления, является также нагревание растворов. Результатом окисления является также нагревание растворов, что позволяет видеть в них не только необходимый для формирования гранито-гнейсового слоя материковой коры химический реагент, но и источник энергии для метаморфизма и гранитизации. Океаническая мания Тихий океан, не выделяет растворов обогащенных кремнием и щелочами. «Тот же механизм позволяет понять, почему базальтовый вулканизм в эвгеосинклиналях происходит не одновременно с гранитизацией и региональным метаморфизмом, а раньше последнего. Возможно, базальтовые магмы при выплавлении поглощают всю флюидную фазу, и поэтому ювенильные растворы, которые могли бы проводить региональный метаморфизм и гранитизацию не отделяются. Если предположить, что в следующий этап — в геосинклинально-инверсионную стадию — эмульсия базальтовых пленок застывает, то может произойти отделение ювенильных растворов, которые и поднимаются в кору. В этом объяснении намечается связь между геохимическими и геотектоническими процессами» [В.В. Белоусов, 1975].
Через десять лет было показано: О.А. Богатиков отмечает, что «в кислых породах имеются первичные дометаморфические цирконы, в то время, как породы основного состава содержат только метаморфические цирконы» (В.В. Белоусов1985).
Волна энергии и водород, уран способствовали формированию земной коры. Резервуары водорода в земной коре не зафиксированы.
Осадочные породы — производные магматических фомаций.
По Н.В. Виноградову, «вся верхняя мантия в настоящее время, в той или иной мере, деплетирована. С этим взаимодействием связана вся дальнейшая эволюция земного вещества. Геологические доказательства наращивания объёмов континентального материала во времени, должны, следовательно, рассматриваться и как доказательство комплементарно связанного с континентализацией процесса океанизации вещества сиалической коры. Оба процесса могут идти только при условии постоянно продолжающегося и циклически повторяющегося перемешивания вещества коры и мантии. Изотопные исследования дают непосредственные доказательства реальности процессов перемешивания вещества коры и мантии. Существуют, по-видимому, и иные механизмы такого перемешивания, кроме признаваемой ныне субдукции. Один из важнейших механизмов перемешивания связан, видимо, с глубинной конвективной циркуляцией поверхностных вод, с процессами преобразования вещественного состава пород под влиянием циркулирующих вод. Побочной ветвью такого взаимодействия является формирование рудоносных гидротермальных растворов. При этом очень важным в научном отношении оказывается следующее обстоятельство. Концентрирование рудных компонентов в гидротермальном растворе происходит за счёт их кларковых содержаний в породах».
Устьянцев Валерий Николаевич:
«В условиях Земли аномально низки содержания двух элементов: H и He. Это связано с их «летучестью». Оба эти элемента – газы, и, к тому же, самые легкие. Поэтому атомарные водород и гелий имеют тенденцию перемещаться в верхние слои атмосферы, а оттуда, не удерживаясь земным тяготением, рассеиваются в космическом пространстве. Водород до сих пор не потерян полностью, так как большая его часть входит в состав химических соединений – воды, гидрооксидов, гидрокарбонатов, гидросиликатов, органических соединений и др. А гелий, являющийся инертным газом, постоянно образуется как продукт радиоактивного распада тяжелых атомов. Таким образом, земная кора по существу является упаковкой анионов кислорода, связанных друг с другом кремнием и ионами металлов, т.е. она состоит почти исключительно из кислородных соединений, преимущественно, из силикатов алюминия, кальция, магния, натрия, калия и железа. При этом, как Вы уже знаете, в составе литосферы 86,5% приходится на чётные элементы» (данные Г. Оддо, Италия).
«Ядерная реакция синтеза — процесс слияния двух атомных ядер с образованием нового, более тяжёлого ядра.
Кроме нового ядра, в ходе реакции синтеза, как правило, образуются также различные элементарные частицы и (или) кванты электромагнитного излученияя.
Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания — это так называемый «кулоновский барьер». Для синтеза ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.
Такие условия могут сложиться в двух случаях:
- Если атомные ядра (ионы, протоны или альфа-частицы), обладающие большой кинетической энергией, встречают на своём пути другие атомные ядра. В природе это возможно, например, при столкновении частиц ионизированного газа, например, в ионосферы Земли, с частицами космических лучей. Искусственно такие реакции реализуются в вакуумных камерах с использованием естественных источников высокоэнергетических α-частиц (впервые 1917, опубликовано 1919, Э. Ререрфорд).
- Если вещество нагревается до чрезвычайно высоких температур в звезде или термоядерном реакторе. Согласно кинематической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. В таком случае говорят о термоядерном синтезе или термоядерной реакции.
• 235U – является первичным ядерным горючим; 233U, 239Pu – вторичным ядерным горючим. Процесс получения вторичного ядерного горючего чрезвычайно важен, т.к. позволяет увеличить сырьевую топливную базу ядерной энергетики.
Проявлена четкая генетическая связь между концентрацией урана в углеводородах и запасами гелия в них. Концентрация урана в углеводородах и запасы гелия в них возрастают от квартера к палеопротерозою. Для формирования минералогических ассоциаций, этой системе требуется энергия, которую она получает от большей системы в которой она находится, это система Земли. Автоколебательная система Земли как стационарный энергетический центр, располагается в еще большей энергетической системе Солнца, система Солнца находится в одном из энергетических рукавов, галактики Млечный Путь. Все эти объекты космоса имеют ядерную область которая является источником энергии первого рода и иерархию генераторов волн энергии второго рода. «Самоорганизация неразрывно связана с волновыми процессами. В любых открытых, диссипативных и нелинейных системах неизбежно возникают автоколебательные процессы, поддерживаемые внешними источниками энергии, в результате которых протекает самоорганизация» (И.Р. Пригожин). То-есть, любые реальные системы следует рассматривать с позиций доказанной И.Р. Пригожиным (1947) теоремы термодинамики неравновесных процессов: «при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропии». В подошве нижней мантии (2900 км), в оболочке D11, происходят активные процессы физико-химических деформаций, которые сопровождаются выделением энергии. Исследования С.В. Старченко, позволяют установить причины и следствия структурно-вещественного преобразования системы Земли и концентрации минерального сырья под воздействием волны энергии мощностью 10 -13 Твт.
В мантии при высоких значениях температуры и давления есть химические элементы С H N S О U Нe, что доказывает наличие в пределах мантии процессов синтеза углеводородов. Система Земли, в ходе своего эволюционного геологического развития не разрушается, а подвергается процессам преобразования на атомарном уровне, при этом ее энергетический потенциал возрастает. На данный момент известны 7 обычных изотопов водорода, а также один экзотический атом водород-4.1 (мюоний, 4He-μ).
«D и 2H — стабильный изотоп с атомной массой, равной 2. Ядро - дейтрон состоит из одного протона и одного и одного. Плотность при 20 °C, г/см³ — 1.1056.
По своим химическим свойствам соединения дейтерия имеют определенные особенности. Так, например, углерод-дейтериевые связи оказываются более «прочными», чем углерод-протиевые, из-за чего химические реакции с участием атомов дейтерия идут в несколько раз медленнее. Этим, в частности, обусловлена токсичность тяжелой воды (вода состава D2O называется тяжёлой водой из-за большой разницы в массе протия и дейтерия).
Дейтерий обладает лучшими свойствами замедления нейтронов. В смеси с тритием или в соединении с литием-6 (гидрид лития 6LiD) применяют для термоядерной реакции в водородных бомбах» (Кузьменко Н. Е., Ерёмин В. В., Попков В. А., 2007).
«В природе тритий образуется в верхних слоях атмосферы при соударении частиц космического излучения с ядрами атомов, например, азота. В процессе распада тритий превращается в 3He с испусканием электрона и антинейтрино (бета-распад), период полураспада — 12,32 года. Доступная энергия распада очень мала (18,59 кэВ), средняя энергия электронов 5,7 кэВ.
Водород – единственный элемент, изотопы которого имеют свои названия: протий, дейтерий, тритий.
Термин «легкая вода» в последнее время используется для обозначения воды, частично очищенной от тяжелых молекул воды, прежде всего молекул дейтериевой воды.
Протий («легкий водород») составляет 99,9% от общего числа атомов водорода во Вселенной и является наиболее распространенным нуклидом в природе среди изотопов всех химических элементов. Стабильный изотоп водорода.
Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены. Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и протий) весьма распространённого на Земле водорода. Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза. Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах. На данный момент известны 7 обычных изотопов водорода, а также один экзотический атом водород-4.1 (мюоний, 4He-μ). Водород имеет три изотопа: Н1 — протий, Н2 — дейтерий (В2) и Н3 — тритий (Т). Тритий радиоактивен.. Период полураспада Н3 всего 12,46 лет, поэтому он весьма недолговечен. При радиоактивном разложении трития излучаются отрицательные р-частицы и образуется стабильный изотоп гелия Не. Во ВНИГНИ определялось содержание дейтерия в нефтях с помощью денсиметрического метода, который заключается в сопоставлении плотности «под сожжения» нефтей с плотностью стандартной воды. Изучены нефти из различных месторождений Советского Союза, где продуктивными отложениями служат породы различного возраста от неогена до кембрия включительно.
D + D --- 4 He + гамма-излучение. Дейтерий обладает лучшими свойствами замедления нейтронов.
Реакция: протий (стабильный изотоп водорода) + дейтерий (стабильный изотоп водорода) --- гелий-4, нейтрино, гамма-квант.
«Реакции синтеза между ядрами лёгких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.
Устьянцев Валерий Николаевич:
Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у урана-238. Альфа-радиоактивные ядра - теллур и массового числа около 106—110, а при атомном номере больше 82 и массовом числе больше 200 практически все нуклиды альфа-радиоактивны, хотя альфа-распад у них может быть и не доминирующей модой распада. Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория. К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от углерода 12С до серы 32S. Во всех видах радиоактивности, кроме γ‑распада, изменяется состав ядра – число протонов Z , массовое число А или и то и другое. Альфа-распад из высоковозбуждённых состояний ядра наблюдается и у ряда лёгких нуклидов, например у лития-7. Среди лёгких нуклидов альфа-распад из основного состояния испытывают гелий-5 (распадается в α + n), литий-5 (α + p), бериллий-6 (α + 2p, бериллий-8 (2α) и бор-9 (2α + p). Альфа-частица испытывает тунельный переход через потенциальный барьер, обусловленный ядерными силами, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциаль, период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера - Нэттола. При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия, в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован. Скорость вылета альфа-частицы составляет от 9400 км/с (изотоп неодима144Nd) до 23 700 км/с у изотопа полония212mPo. Альфа-распад может рассматриваться как предельный случай кластерного распада.
Кла́стер (англ. cluster — скопление, кисть, рой) — объединение нескольких однородных элементов, которое может рассматриваться как самостоятельная единица, обладающая определёнными свойствами.
« Радиоактивный распад
Радиоактивный распад возможен тогда, когда он сопровождается выделением энергии. Масса М исходного ядра должна превосходить сумму масс продуктов распада М > ∑i mi. Это условие является необходимым, но не всегда достаточным. Распад может быть запрещен другими законами сохранения − сохранения момента количества движения, электрического заряда, барионного заряда и т. д. Радиоактивный распад характеризуется временем жизни радиоактивного изотопа, типом испускаемых частиц, их энергиями, а при вылете из ядра нескольких частиц еще и относительными углами между направлениями вылета частиц.
Основные виды радиоактивного распада:
- α-распад – испускание ядрами α-частиц,
- β-распад – испускание (или поглощение) электрона и антинейтрино или позитрона и нейтрино,
- γ-распад – испускание γ-квантов,
- спонтанное деление – распад ядра на два осколка сравнимой массы.
Альфа-распад
«Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2 ), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A» (С.Г. Кадмиксий). Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии:
(A,Z) → (A-4, Z-2) + 4He.
Характерные особенности α‑распада:а) α-распад происходит на тяжелых ядрах с Z > 60.б) Периоды полураспада известных α-радиоактивных ядер варьируются в широких пределах. Так, изотоп вольфрама 182W имеет период полураспада T1/2 > 8.3·1018 лет, а изотоп протактиния 219Pa – T1/2 = 5.3·10-8 c.
Энергия a-распада
Qα = [M(A,Z) – M(A-4, Z-2) – mα]c2.
Так как mα << М, основная часть энергии α-распада уносится α-частицей и лишь ≈ 2% - конечным ядром. Тонкая структура α‑спектров связана с образованием конечного ядра не только в основном, но и в возбуждённых состояниях, т.е. α-спектры несут информацию об уровнях ядер.
Согласно теории Гамова, основным фактором, влияющим на время жизни a-активного ядра, является вероятность прохождения α-частицы через потенциальный барьер.
Пусть: внутри ядра радиуса R существует α-частица массы mα. :
где μ = mαMядр/(mα + Mядр) ≈ mα − приведенная масса системы.
Потенциальный барьер α-распада.
Высота центробежного барьера , как правило, значительно ниже высоты кулоновского барьера, однако эта добавка может существенно влиять на вероятность распада. Установленная зависимость позволила объяснить эмпирический закон Гейгера-Неттола, связывающий период полураспада T1/2 и кинетическую энергию α-частицы Tα:
lg T1/2 = a + bZTα1/2.
Энергии частиц в распадах
Получим расчетные формулы для энергий частиц, образующихся в результате α-, β- и γ- распадов. Альфа-распад представляет собой двухчастичный распад C(A,Z) → 4He + B(A-4, Z-2), где A и Z − массовое число и заряд ядра C. Известно, что энергия α-распада Q = (mC − (mα + mB)c2 составляет несколько МэВ, что много меньше масс продуктов распада. Тогда, используя соотношение mC ≈ mα + mB, получим для кинетической энергии α-частицы:
и для энергии отдачи дочернего ядра:
Бета-распад представляет собой трехчастичный распад:
β--распад: C(A,Z) → B(A, Z+1) + e- + e
β+-распад: C(A,Z) → B(A, Z-1) + e+ + νe
Максимальная отдача дочернего ядра соответствует случаю, когда импульсы электрона (позитрона) и антинейтрино (нейтрино) сонаправлены:
и энергия антинейтрино (нейтрино) Eν ≈ 0, тогда:
Так как << Q, Q ≈ Te + Eν и максимальные энергия электрона (позитрона) и антинейтрино (нейтрино)ффф:
≈≈ Q.
Таким образом, приближенно значение максимальной энергии нейтрино совпадает с верхней границей спектра β-распада и спектр нейтрино зеркально симметричен спектру электронов:
Nν(E) = Ne(Q − E).
Третий случай β-распада, e-захват C(A,Z) + e- → B(A, Z-1) + νe, поскольку Te << me, фактически соответствует двухчастичному распаду системы с массой mС + me Спектр продуктов распада носит дискретный характер, энергия отдачи дочернего ядра:
TB = Q2/(2mCc2)
и энергия нейтрино:
Спектры электронов и антинейтрино, образующихся при β--распаде изотопа 40K,
40K → 40Ca + e- + e.
Считалось даже, что в β-распаде не выполняется закон сохранения энергии. Объяснение непрерывного характера β-спектра было дано В. Паули, который высказал гипотезу, что при β-распаде вместе с электроном рождается ещё одна частица с маленькой массой, т.е. β-распад − трехчастичный процесс. В конечном состоянии образуется ядро (A,Z±1), электрон и лёгкая нейтральная частица – нейтрино (антинейтрино). Т.к. масса ядра (A,Z±1) гораздо больше масс электрона и нейтрино, энергия β-распада уносится лёгкими частицами. Распределение энергии β-распада Qβ между электроном и этой нейтральной частицей приводит к непрерывному β-спектру электрона.
Из закона сохранения энергии следует, что спектр антинейтрино зеркально симметричен спектру электронов.
Nν(E) = Ne(Qβ – E),
где Nν(E) − число антинейтрино с энергией Е, Ne(Qβ – E) − число электронов с энергией (Qβ – E), Qβ − энергия β-распада, равная суммарной энергии, уносимой электроном и антинейтрино (энергия ядра отдачи 40Ca не учитывается). Наряду с законами сохранения энергии, импульса, момента количества движения в процессе β-распада выполняются законы сохранения барионного B и электронного лептонного Le квантовых чисел.
- Электроны, нейтрино имеют B = 0, Le = +1.
- Позитроны, антинейтрино имеют B = 0, Le = −1.
- Каждый нуклон, входящий в состав ядра, имеет B = +1, Le = 0.
Поэтому появление электрона при β--распаде всегда сопровождается образованием антинейтрино. При β+-распаде образуются позитрон и нейтрино. При е-захвате из ядра вылетают нейтрино. Так как е-захват – двухчастичный процесс, спектры нейтрино и ядра отдачи являются дискретными. Наблюдение дискретного спектра ядер отдачи, образующихся при е-захвате, было первым подтверждением правильности гипотезы Паули.
β-радиоактивные ядра имеются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая массовыми числами самых тяжелых ядер.
За счет того, что интенсивность слабых взаимодействий, ответственных за β-распад, на много порядков меньше ядерных, периоды полураспада β-радиоактивных ядер в среднем имеют порядок минут и часов. Для того чтобы выполнялись законы сохранения энергии и углового момента при распаде нуклона внутри ядра, оно должно перестраиваться. Поэтому период, а также другие характеристики β-распада в сильной степени зависят от того, насколько сложна эта перестройка. В результате периоды β-распада варьируются почти в столь же широких пределах, как и периоды α-распада. Они лежат в интервале T1/2(β) = 10-6 с – 1017 лет.
Гамма-распад представляет собой процесс излучения γ-квантов ядром, находящимся в возбужденном состоянии. Энергия γ-перехода:
Q = mi − mf = mя + Ei − (mя + Ef) = Ei − Ef,
где mi, mf, Ei, Ef − массы и энергии возбуждения начального и конечного состояний ядра
(mi,f,с2 >>Ei,f). Энергия ядра отдачи:
Tя = Q2/(2mяc2),
энергия γ-квант:0
Устьянцев Валерий Николаевич:
Eγ ≈ Q.
«Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены. Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространённого на Земле водорода.
Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза.
Реакции синтеза между ядрами лёгких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.
Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у урана-238. Альфа-радиоактивные ядра - теллур и массового числа около 106—110, а при атомном номере больше 82 и массовом числе больше 200 практически все нуклиды альфа-радиоактивны, хотя альфа-распад у них может быть и не доминирующей модой распада.
Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.
К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от углерода 12С до серы 32S.
Во всех видах радиоактивности, кроме γ‑распада, изменяется состав ядра – число протонов Z , массовое число А или и то и другое.
На Земле гелий образуется в результате альфа-распада тяжёлых и легких элементов альфа-частицы, излучаемые при альфа-распаде, — это ядра гелия-4. Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается метаном, концентрация гелия в котором может достигать 7 % от объёма и выше.
Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах» (Климов А. Н.).Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.
К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от углерода 12С до серы 32S.
Во всех видах радиоактивности, кроме γ‑распада, изменяется состав ядра – число протонов Z , массовое число А или и то и другое.
На Земле гелий образуется в результате альфа-распада тяжёлых и легких элементов альфа-частицы, излучаемые при альфа-распаде, — это ядра гелия-4. Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается метаном, концентрация гелия в котором может достигать 7 % от объёма и выше.
Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах» (Климов А. Н.)..
Радиоактивные семейства
«Практически все тяжелые ядра Z > 83 имеют положительную энергию относительно α-распада, т.к. масса исходного ядра (A,Z) оказывается больше суммы масс α-частицы и образующегося в результате α-распада ядра (A-4,Z-2). Поэтому возможны цепочки последовательных α-распадов ядер. Наиболее тяжелые из встречающихся на Земле долгоживущих радиоактивных изотопов – это изотопы 235U, 238U и 232Th. Распадаясь эти изотопы образуют дочерние изотопы, которые также являются радиоактивными и распадаются в результате α- и β-распада пока не образуются стабильные изотопы 206Pb, 207Pb и 208Pb. Возможны 4 цепочки последовательных α-распадов, образующих 4 радиоактивных семейства с массовыми числами A, равными соответственно 4n, 4n+1, 4n+2 и 4n+3, где n − целое число. Изотопы, образующиеся в результате радиоактивного распада 235U, 238U и 232Th, образуют 3 радиоактивные семейства. Массовые числа изотопов, входящих в каждое семейство, описываются соотношением 4n+C.
Семейство
Наиболее
долгоживущий
изотоп семейства
Период полураспада
T1/2
Конечный продукт
распада семейства
A = 4n
1.4·1010 лет
A = 4n+1
2.2·106 лет
A = 4n+2
4.5·109 лет
A = 4n+3
7·108 лет
Так как родоначальником семейства 4n+1 является изотоп 237Np, период полураспада которого гораздо меньше времени существования Земли (5·109 лет), то практически оно полностью распалось. Семейство 4n+1 удалось обнаружить после того, как были открыты трансурановые элементы, распад которых приводил к образованию 237Np. При распаде изотопов, входящих в состав радиоактивных семейств, основными каналами распада являются α-распад и β--распад.
Однако наряду с этим в ряде случаев наблюдаются распады с испусканием более тяжелых фрагментов − изотопов 14C, 24,26Ne, 28Mg. Эти распады называются кластерной радиоактивностью. Вероятность кластерного распада как правило, составляет 10-12–10-10 % от вероятности α-распада.
Поле, в котором движется α-частица, вылетающая из ядра, имеет характерную форму барьера. Вплоть до поверхности ядра. Ядерные силы притяжения удерживают α-частицу в ядре. На расстояниях больше радиуса атомного ядра – это кулоновские силы отталкивания. Поэтому по мере удаления α‑частицы от центра ядра её потенциальная энергия вначале растёт, достигая максимума, а затем падает до нуля на бесконечности.
Можно выделить три области.
1. r < R − сферическая потенциальная яма глубиной V0. В классической механике альфа-частица с кинетической энергией Eα + V0 может двигаться в этой области, но не способна ее покинуть. В этой области существенно сильное взаимодействие между альфа-частицей и остаточным ядром.
2. R < r < Re − область потенциального барьера, в которой потенциальная энергия больше энергии альфа-частицы, т.е. это область запрещенная для классической частицы.
3. r > Re − область вне потенциального барьера. В квантовой механике возможно прохождение альфа-частицы сквозь потенциальный барьер.
Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу конечного ядра. Высота кулоновского барьера Bk определяется соотношением:
.
Z и z − заряды (в единицах заряда электрона e) конечного ядра и α‑частицы соответственно. Например, для 238U Bk ≈ 30 МэВ. (мегаэлектронвольт (МэВ) — 1 млн электронвольт, гигаэлектронвольт, (ГэВ) — 1 млрд электронвольт, тераэлектронвольт (ТэВ) — 1 трлн электронвольт).
Температура, эквивалентная 0,1 МэВ, приблизительно равна 109 К, однако есть два эффекта, которые снижают температуру, необходимую для термоядерной реакции:
Во-первых, температура характеризует лишь среднюю кинетическую энергию, есть частицы как с меньшей энергией, так и с большей. На самом деле в термоядерной реакции участвует небольшое количество ядер, имеющих энергию намного больше средней (так называемый «хвост максвелловского распределения. Во-вторых, благодаря квантовым эффектам, ядра не обязательно должны иметь энергию, превышающую кулоновский барьер. Если их энергия немного меньше барьера, они могут с большой вероятностью туннелировать сквозь него» (Яворский, Детлаф А.А., Лебедев А.К., Климов А.Н., 1985, Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А., 1982).
СNO-цикл Солнце
Основной источник энергии – протон-протонный цикл. Это очень медленная реакция (характерное время протекания – 7,9∙109 лет), так как она обусловлена слабым взаимодействием. Суть реакции состоит в том, что из четырех протонов получается ядро гелия. Наиболее распространенными элементами тяжелее водорода и гелия, в порядке убывания содержания, являются кислород, углерод, неон, азот, железо, магний, кремний, сера, аргон, алюминий, никель, натрий и кальций. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неона, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, по 2 атома никеля, натрия и кальция, а также малое количество прочих элементов. Атмосфера. Температура в фотосфере Солнца равна почти 5505 тысячи градусов Цельсия. Здесь солнечная радиация становится видимым светом. Солнечные пятна на фотосфере холоднее и темнее, чем в окружающей области. В центре больших солнечных пятен температура может опускаться до нескольких тысяч градусов Цельсия. Хромосфера, следующий слой солнечной атмосферы, немного холоднее — 4320 градусов. Разница температур поверхности Солнца и ядра Земли указывает на то, что в области ядра Земли происходит ядерная реакция, в результате которой образуется гелий и возникает волна энергии. Под воздействием волн энергии происходит структурно-вещественное преобразование системы Земли.
Согласно Национальной солнечной обсерватории, хромосфера буквально означает «цветная сфера». Видимый свет от хромосферы обычно слишком слаб, чтобы быть видным на фоне более яркой фотосферы, но во время полных солнечных затмений, когда луна покрывает фотосферу, хромосфера видна как красный ободок вокруг Солнца. Температура значительно повышается в короне, которая также может быть видна во время затмения, когда плазма притекает наверх. Корона может быть удивительно горячей по сравнению с телом солнца. Температура здесь варьируется от 1 млн градусов до 10 млн градусов Цельсия. Когда корона остывает, теряя тепло и радиацию, вещество выдувается в виде солнечного ветра, который иногда пересекается с Землей.
При помощи спектрального анализа исследователи выяснили, каких веществ точно нет на поверхности этой звезды. Например, хлора, ртути и бора. Однако ученые предполагают, что эти вещества, помимо основных химических элементов, входящих в состав Солнца, могут находиться в его ядре. Практически на 42% наша звезда состоит из водорода. Примерно 23% приходится на все металлы, которые есть в составе Солнца. Как и большинство параметров других небесных тел, характеристики нашей звезды рассчитываются лишь теоретически при помощи вычислительной техники. В качестве исходных данных служат такие показатели, как радиус звезды, масса и ее температура. В настоящее время ученые определили, что химический состав Солнца представлен 69 элементами. Большую роль в этих исследованиях играет спектральный анализ. Например, благодаря ему был установлен состав атмосферы нашей звезды. Также была обнаружена интересная закономерность: набор химических элементов в составе Солнца удивительно похож на состав каменных метеоритов. Этот факт – важное свидетельство в пользу того, что эти небесные тела имеют общее происхождение» (википедия). .
Впервые зафиксированы нейтрино вторичного термоядерного цикла Солнца. Ученые из международной коллаборации Borexino объявили о первом наблюдении нейтрино из реакций углеродно-азотного цикла в Солнце. Это экспериментально подтверждает теоретические представления о вторичном цикле термоядерного синтеза в массивных звездах. Результаты исследования опубликованы в журнале Nature. Звезды питаются энергией термоядерных реакций превращения водорода в гелий, происходящих в их недрах. Такой синтез возможен двумя путями: в протон-протонной (pp) цепи, включающей только изотопы водорода и гелия, и в ходе вторичного цикла, который еще называют углеродно-азотным, или CNO-циклом по символам углерода, азота и кислорода — элементов, выступающих катализаторами реакций. Ядерные реакции как первичного, так и вторичного цикла сопровождается испусканием характерных нейтрино. Протон-протонные цепи производят около 99 процентов энергии Солнца и сходных с ним по размерам звезд, поэтому ранее ученым удавалось наблюдать только нейтрино из рр-цикла. Но считается, что у тяжелых звезд, с массой в полтора раза и более массивнее Солнца, преобладает углеродно-азотный цикл, и важно было экспериментально доказать его существование. Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию о ядерных процессах в глубинах звезды и условиях их протекания. Зафиксировать среди солнечных нейтрино те, которые относятся к вторичному циклу было очень сложной задачей, так как их сигнал не намного превышал фоновый. Но ученым коллаборации Borexino это удалось. "До недавнего времени оставался открытым вопрос, удастся ли зарегистрировать нейтрино из CNO-цикла. Регистрацию CNO-нейтрино, помимо малости самого потока, осложняет присутствие спектральной компоненты природного фона, неотличимой от их спектра", — приводятся в пресс-релизе Оъединенного института ядерных исследований в Дубне слова одного из участников эксперимента, старшего научного сотрудника Лаборатории ядерных проблем им. В.П. Джелепова ОИЯИ Олега Смирнова. Свойство беспрепятственно проникать сквозь вещество позволяет нейтрино сохранять информацию о внутренних процессах в Солнце, но это же свойство делает их неуловимыми для обычных детекторов частиц. Поэтому для регистрации нейтрино используют специальные детекторы очень большой массы с тщательным контролем всех процессов, которые могут отражать взаимодействия нейтрино с электронами. В тех редких случаях, когда нейтрино взаимодействует с электроном, он передает ему часть своей энергии. Этот процесс напоминает упругое столкновение бильярдных шаров. Электрон, получив некоторую начальную скорость, постепенно теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов. Таким образом, взаимодействие нейтрино с электроном приводит к вспышке света, и несколько тысяч фотонов разлетаются от точки взаимодействия во все стороны. Эти фотоны регистрируют тысячи детекторов света, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, а также определить точку, где произошло взаимодействие. В сверхчувствительном детекторе Borexino, расположенном в самой большой подземной лаборатории в мире в Гран-Сассо в Центральной Италии, в качестве активной среды для регистрации нейтрино используется около 100 тонн жидкого сцинтиллятора. "Несмотря на огромное количество солнечных нейтрино, проходящих через детектор (более секстиллиона за день) только полсотни нейтрино оставляют заметный "след" в детекторе за это же время. Ученые, работающие над анализом данных, смогли выделить сигнал, который можно объяснить только присутствием нейтрино из CNO-цикла. Таким образом доказано протекание ядерных реакций CNO-цикла в Солнце. Полный поток нейтрино из CNO-цикла составляет около одного процента от полного потока солнечных нейтрино", — поясняет Олег Смирнов. Открытие имеет первостепенное значение для астрофизики, так как в звездах более массивных, чем Солнце, энергия выделяется в основном за счет углеродно-азотного цикла. Его механизм теперь экспериментально подтвержден.
Ядро Солнца — гигантский термоядерный реактор. В процессе ядерных трансформаций при температуре около 15 миллионов градусов протоны сливаются друг с другом и образуют гелий. Гелий нарабатывается в двух многостадийных процессах: в протон-протонной (pp) цепочке и в углеродно-азотном (CNO) цикле. Часть ядерных реакций сопровождается испусканием нейтрино. Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию как о ядерных процессах в глубинах Солнца, так и об условиях их протекания. Хотя поток солнечных нейтрино огромен и исчисляется миллиардами частиц на квадратный сантиметр в секунду, регистрация неуловимых нейтрино представляет собой чрезвычайно сложную экспериментальную задачу». Доказательство прохождения реакций углеродно-азотного цикла в Солнце является важным научным достижением, шагом на пути к разрешению загадки его химического состава. Поскольку поток нейтрино, генерируемый в CNO-цикл, напрямую связан с концентрацией элементов C, N и O, участвующих в реакциях, то измерение потоков этих нейтрино напрямую связано с химическим составом Солнца.
Устьянцев Валерий Николаевич:
Таблица плотности планет Солнечной системы
Планета
Плотность, кг/м3
Меркурий
5430
Венера
5240
Земля
5515
Марс
3940
Юпитер
1330
Сатурн
700
Уран
1300
Нептун
1760
Плутон
2000
Луна (спутник Земли)
3346
CNO-цикл на Солнце
Источник: Newsru.com, Елена Денисова
Гелий-3, по мнению ученых, - самый перспективный источник энергии, его запасы в верхних слоях поверхности Луны достигают около 500 млн тонн, что может полностью обеспечить земную энергетику на срок более 1000 лет. На Земле же этот изотоп практически отсутствует, в недрах планеты его не более нескольких сотен килограммов.
Сапропель.
Биологическое действие сапропелей
«Природные геоорганические образования (лечебные грязи, экстракты торфа, сапропеля, озекериты, шунгиты) как источники ценных биологически активных веществ обладают комплексным фармакологическим спектром воздействия. В практической медицине биологическая активность рассматривается как интегральное понятие, включающее ряд таких критериев, как ферментативная активность пелоида, напряженность микробиологических процессов, антимикробные свойства в отношении ряда условно-патогенных и патогенных для человека микробов, наличие фармакодинамических компонентов и др.
Сложные биохимические процессы, протекающие при генезисе сапропеля, обуславливают большое разнообразие химического состава его органической массы (ОМ). В составе ОМ сапропелей определены: битумы, водорастворимые, легкогидролизуемые и гуминовые вещества, целлюлоза, лигнин, липиды, ароматические эфиры, каротиноиды, ксантофиллы, спирты, кислоты, стерины, производные хлорофилла, фосфолипиды, аминокислоты, сахара, углеводороды, металлопорфирины, фенолы, широкий набор витаминов. Состав углеводно-уранового комплекса представлен гексозами (глюкоза, галактоза, манноза), пентозами (арабиноза, ксилоза) и уроновыми кислотами. В гидролизатах сапропелей идентифицированы аминокислоты, среди которых доминируют аспарагиновая и глутаминовая, глицин, пролин, L-α-аланин, гистидин, лизин, аргинин. Особенностью гуминовых веществ (ГВ) является их обогащенность аминокислотами, полипептидами, каротиноидами, стеринами, витаминами, металлопорфиринами, флавоноидами, терпенами, фенолами, гетероциклическими соединениями, алкалоидами. Данный спектр соединений определяет высокую биологическую активность как сапропеля в целом, так и различных препаратов на его основе, что определило области их использования. Разработаны и экспериментально апробированы методики исследования лечебных грязей и выделяемых из них соединений, позволившие установить ряд значимых свойств: безвредность, противовоспалительную, вирусоингибирующую, антимикробную, антибактериальную и антигрибковую активность. Например, присутствие в сапропелях физиологически активных микроэлементов: Cu, Mn, As, Zn, B, J и др., – активной грязеобразующей микрофлоры с преобладанием микроорганизмов, перерабатывающих безазотистые и азотсодержащие органические соединения, обуславливают их антимикробные свойства по отношению к тест-культурам белого и золотистого стафилококков. Активным началом являются выделенные из сапропеля микробы-антагонисты: спорообразующие формы, плесневые грибы и актиномицеты.
Для сапропелей, содержащих микрофлору, участвующую в переработке азотистых соединений: нитрифицирующие, аммонифицирующие, денитрифицирующие группы, а также микобактерии, плесневые грибы, - выявлена ферментативная активность по каталазе, пероксидазе, дегидрогеназе.
Выявлено, что сапропели, обогащенные водорастворимыми витаминами, обладают выраженными антимикробными свойствами по отношению к золотистому стафилококку.
Установлена связь биологической активности пелоидов с их антиокислительными свойствами, большая роль в формировании которой отводится жирорастворимым антиоксидантам фенольной природы – токоферолам, проявляющим способность связывать активные свободные радикалы. Исследовано 20 образцов данных отложений Сибири на содержание водо- и жирорастворимых витаминов (С, РР, В1, В2, В6 и токоферола), а также ГВ и битумной фракции. Выявлены антимикробные свойства пелоидов в отношении E.coli, C.perfringens, St.aureus и Ps.aeruginosa.
Л. Марченко и Е. Гуринович в микрофлоре белорусских сапропелей обнаружили большое число бактерий и актиномицетов, обладающих антибактериальными свойствами как к патогенным, так и к условно-патогенным микроорганизмам. Выявлены антагонисты среди бактерий и актиномицетов по отношению к золотистому и белому стафилококкам, тифозной палочке и паратифозной палочке В, к патогенным грибам человека (Achovion Schorleini, Achovion gypseum и др.), к микрофлоре гинекологических больных.
Доказано, что сапропелевые грязи оказывают положительное влияние на периферическую нервную, эндокринную, сердечно-сосудистую, пищеварительную системы, улучшают состояние опорно-двигательного аппарата, стимулируют метаболические процессы в печени людей, излечивают кожные и гинекологические заболевания; способствуют быстрому прекращению воспалительных процессов и хорошему излечению экзем, дерматитов, ожогов, что обусловлено наличием в сапропеле антибиотиков и отсутствием патогенных микроорганизмов.
Н. Самутин доказал, что сапропель является эффективным противовоспалительным средством пролонгированного действия при хронической воспалительной патологии суставов. При применении аппликаций восстанавливаются масса иммунокомпетентных органов (тимус, селезенка), клеточность тимуса и продукция антителообразующих клеток в селезенке, показатели фагоцитоза нейтрофилами, улучшается элиминация циркулирующих иммунных комплексов.
Комбинированное действие сапропелей и магнитотерапии эффективно при лечении шейного остеохондроза позвоночника с неврологическими проявлениями.
Экспериментальные исследования восстановительных процессов при повреждении паренхимы печени, проведенное на крысах линии Вистар обоего пола с вызванным токсическим гематитом, свидетельствуют о том, что курс магнитопелоидтерапии по сравнению с пелоидотерапией и магнитотерапией более эффективно нормализовал состояние печени у крыс с токсическим гепатитом. По мнению авторов, механизм ускорения развития репаративных процессов под влиянием магнитопелоидотерапии можно объяснить изменением биологических свойств сапропеля под влиянием применяемого постоянного магнитного поля (ПМП), неоднородность которого является фактором, повышающим эффективность процесса омагничивания. Неоднородное ПМП, одновременно воздействуя на сапропель и организм животного, вероятно, осуществляет пространственно-временную переорганизацию метаболических процессов как в тканях животного, так и в самом сапропеле.
Разработаны методы лечения людей, страдающих остеоартрозом, с использованием сапропелей оз. Боровое (Красноярский край). Важную роль в формировании биологической активности данного сапропеля играют: гуминовые и фульвокислоты, липиды, ферменты типа пероксидазы, полифенолоксидазы, дегидрогеназы, каталазы; витаминный комплекс (аскорбиновая кислота, витамины В, РР и др.). Липиды, являющиеся продуктами жизнедеятельности синезеленых водорослей, проявляют бактериостатическую и бактерицидную активность, оказывают противовоспалительное, обезболивающее, иммуномодулирующее действие, положительное влияние на гемодинамику суставов, тонус вегетативной нервной системы.
Экстракт высокополярных сульфидных иловых грязей, содержащий фосфолипиды, каротины, ксантофиллы, хлорофилл и его производные, стерины, миксоксантофиллы, высокомолекулярные кислоты в случае его применения в сочетании с ультрафонорезом при лечении острого воспаления придатков матки на фоне антибактериальной терапии уменьшает выраженность гемодинамических нарушений; экссудативных процессов, предупреждает разрастание соединительнотканевой остромы, уменьшает выраженность вызываемых воспалительным процессом массивных явлений атрезии фолликулов в яичниках, стимулирует их рост и образование желтых тел.
О. Тихоновская и Л. Шустов заключили, что применение масляного раствора экстракта высокомолекулярных сульфидных иловых грязей на фоне медикаментозной терапии с ультрафонорезом приводит к более быстрому выздоровлению женщин с гинекологическими заболеваниями, сохранению и восстановлению репродуктивной функции.
Предлагаемый механизм лечебного действия заключается в активном участии фосфолипидов, каротинов, ксантофиллов, высокомолекулярных кислот в функционировании прооксидантных и антиоксидантных систем, а также в контроле клеточных процессов. Гуминовые вещества, присутствующие в сапропелях, стимулируют биологические процессы в организме животного, обладают антимикробным и антисептическим действием [10,. Низкомолекулярная фракция ГК, включающая органоминеральные формы, проникает через кожу и транспортирует к органам различные физиологически активные вещества [8]. Использование ГК для лечения полиартрита доказало, что ГК сапропелей обладают кортизоноподобным действием, вызывают непосредственные ферментативные реакции как в стенках капилляров, так и в клетках эпителия, адсорбирующих цитохромоксидазу, щелочную фосфатазу, АТФ, тормозят действие гиалуронидазы, входящей в состав соединительной ткани, и таким образом купируют воспалительные процессы.
Применение ГК при нейродермитах объясняется склонностью ГК к хелатообразованию с ионами тяжелых металлов, радионуклидов, токсинов и подавлению отрицательного воздействия последних на организм, что способствует увеличению объемного кожного и мышечного кровотока, уменьшает застойные явления.
Анализ приведенного выше материала указывает на актуальность выполнения исследований по изучению вещественного состава сапропелей различных регионов РФ, выявлению особенностей структурной организации соединений органического вещества сапропелей, их качественного и количественного соотношения; проведения биологического тестирования сапропелей в целом, а также различных препаратов, полученных на их основе. Важным является выявление генетической связи состава и биологической активности сапропелей с исходным растительным и животным материалом, обеспечившим формирование сапропелевой залежи, установление основных направлений биохимической трансформации исходного биоматериала.
Целью настоящего исследования является изучение особенностей химического состава и биологической активности сапропеля оз. Лебяжье (Татарстан).
Материалы, методы и результаты исследования
Навигация
Перейти к полной версии