Происхождение нефти газа: от теории происхождения к технологиям поисков > Экзотические теории происхождения, нетрадиционные методы и технологии поисков и разведки нефти и газа

Геосолитонная теория или как найти черную кошку в темной комнате

<< < (384/464) > >>

Шестопалов Анатолий Васильевич:
http://nanoworld.org.ru/post/123320/#p123320

--- Цитата: Тарасенко ---https://globalclimatestrike.net/next/ Вот наконец то люди поднялись на борьбу с изменением климата... Какая то девчонка 15-летняя подняла весь мир!!! Я на этом форуме уже скоро 10 лет никого не поднял, а она подняла! Да здравствует новая энергия!!!

--- Конец цитаты ---

Говорящая мартышка требует микроволновую энергетику Кушелева А.Ю.


https://globalclimatestrike.net/next/


Обманутая или за деньги тупая школота шведская (отказалась ходить в школу в знак протеста что никто не борется с потеплением)
   

Полеванов Владимир Павлович: нет глобального потепления, есть глобальное жульничество!

https://youtu.be/PSHKcuNu3Kc

http://nanoworld.org.ru/post/123331/#p123331


--- Цитата: Kushelev ---Продолжается подготовка эксперимента в Москве


За новостями можно следить в этой теме: http://nanoworld.org.ru/topic/2129/

А это для создания настроения:

Песня "Луший город Земли".



Оригинал 60-ых годов в исполнении Муслима Магомаева: https://www.youtube.com/watch?v=GPrWON4vCzQ

Слова: http://chords.seriyps.ru/short/bravo::luchshij-gorod-zemli/
--- Конец цитаты ---

Шестопалов Анатолий Васильевич:


[И] 201909240703 Единый механизм выброса в острие растущего разрыва

Синергетика: самосборка Вселенной после Большого взрыва (читать Большого выброса)

https://youtu.be/tpu41kTQw2A

   Филиппов Б.П. Выбросы вещества из солнечной атмосферы // Успехи физических наук, том 189, N9, сентябрь, 2019. - с.905-924.
https://yadi.sk/i/Jxf2clHve5qFjA







   Рис. 9

   Рис. 13

Шестопалов Анатолий Васильевич:
Кольцегранные модели атомов Павла Осмера (Pavel Osmer), Брно, Технологический университет, Чехия

http://www.engineeringletters.com/issues_v18/issue_2/EL_18_2_02.pdf
(Advance online publication: 13 May 2010)



https://ru.scribd.com/document/75397089/Pavel-O%C5%A1mera-Vortex-Fractal-Ring-Structures
http://pavelosmera.cz/public/files/2010-osmera-mendel2.pdf
Pavel Ošmera
European Polytechnic Institute Kunovice
Osvobození 699, 686 04 Kunovice
Czech Republic
osmera@fme.vutbr.cz


https://www.researchgate.net/publication/252577581_Vortex-ring-fractal_Structure_of_Atom_and_Molecule



http://www.iaeng.org/publication/WCECS2009/WCECS2009_pp89-94.pdf
Proceedings of the World Congress on Engineering and Computer Science 2009 Vol I
WCECS 2009, October 20-22, 2009, San Francisc

https://link.springer.com/book/10.1007/978-3-319-07401-6

Fractal Models of Atoms and Molecules
Pavel Ošmera senior, Pavel Ošmera junior
Pages 429-438
https://link.springer.com/content/pdf/10.1007%2F978-3-319-07401-6_43.pdf















References
1. Zmeskal, O., Nezadal, M., Buchnicek, M.: Fractal-Cantorial geometry, Hausdorf dimension and fundamental laws of physics. Chaos, Solitons and Fractals 17, 113–119 (2003)
2. Zmeskal, O., Nezadal, M., Buchnicek, M.: Coupling constants in fractal and cantorian
physics. Solitons and Fractals (2005)
3. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. vol. I, II,
III. Addison-Wesley Publishing Company (1977)
4. Duncan, T.: Physics for today and tomorrow. Butler & Tanner Ltd., London (1978)
5. Huggett, S.A., Jordan, D.: A Topological Aperitif. Springer-Verlag (2001)
6. Pauling, L.: General Chemistry, Dover Publication, Inc., New York (1988)
7. Smits, A.J., Lim, T.T.: Flow visualizatio. Imperial College Press (2012)
8. Osmera, P.: Fractal Dimension of Electron. In: Proceedings of MENDEL 2012, Brno,
Czech Republic, pp. 186–191 (2012)
9. Osmera, P.: Vortex-ring fractal Structures of Hydrogen Atom. In: WCECS 2009, Proceedings of World Congress on Engineering and Computer Science, San Francisco, pp. 89–94
(2009)
10. Osmera, P.: Vortex-ring-fractal Structure of Atom and Molecule. IAENG Transaction on
Engineering Technologies, American Institute of Physics 4, 313–327 (2010)

Шестопалов Анатолий Васильевич:
Виноград в микроволновке


https://youtu.be/wCrtk-pyP0I






https://www.pnas.org/content/116/10/4000

Связь образования плазмы в винограде с микроволновыми резонансами водных димеров
Хамза К. Хаттак , Пабло Биануччи и Аарон Д. Слепков
PNAS 5 марта 2019 г. 116 (10) 4000-4005; впервые опубликовано 19 февраля 2019 г.
Скачать https://www.pnas.org/content/pnas/116/10/4000.full.pdf

Значимость
В популярном салоне плазму создают путем облучения виноградных полушарий в бытовой микроволновой печи. Эта работа связывает источник плазмы с микроволновыми фотонными горячими точками на стыке водных диэлектрических сферических димеров. Мы используем комбинацию методов тепловидения и компьютерного моделирования, чтобы показать, что плоды размером с виноград и гранулы гидрогеля образуют резонансные полости, которые концентрируют электромагнитные поля в экстремальных субволновых областях. Это обеспечивается большой диэлектрической восприимчивостью воды на микроволновых частотах. Кроме того, поглощающие свойства воды имеют ключевое значение для вымывания сложных внутренних режимов и для обеспечения возможности образования мимолетной горячей точки. Наш подход к микроволновым резонансам в высокодиэлектрических материалах открывает «песочницу» для исследования нанокластерной фотоники.

Абстрактные
Зажигание нарезанных виноградных полушарий в бытовой микроволновой печи уже более двух десятилетий плохо объясняется в интернет-салоне. Распространяя это явление на целые сферические димеры различных плодовых и гидрогелевых водяных шариков размером с виноград, мы демонстрируем, что образование плазмы происходит из-за электромагнитных горячих точек, возникающих в результате кооперативного взаимодействия резонансов Ми в отдельных сферах. Большая диэлектрическая проницаемость воды на соответствующих гигагерцовых частотах может быть использована для формирования систем, которые имитируют поверхностные плазмонные резонансы, которые обычно резервируются для наноразмерных металлических объектов. Кроме того, поглощающие свойства воды действуют для гомогенизации профилей более высоких мод и для предпочтительного выбора концентраций затухающего поля, таких как осевая горячая точка. Таким образом,

микроволновая фотоникадиэлектрические резонаторыплазменная ионизациягидрогелиморфологически-зависимые резонансы

Это общепризнанная истина, что пара виноградных полушарий, подвергшихся воздействию интенсивного микроволнового излучения, будет зажигать, зажигая плазму. Этот хитрый прием стал основой научно-выставочных проектов и популярных научно-популярных блогов ( 1 ), а также онлайн-видео на протяжении более двух десятилетий (поиск на «виноградной плазменной микроволновой печи» на YouTube покажет многочисленные результаты этого явления). Это явление неизменно демонстрируется виноградом, разрезанным пополам тонкой линией кожи, оставленной для того, чтобы соединить два полушария, и облученной в бытовой микроволновой печи в течение нескольких секунд, искрящейся плазма из кожного мостика ( рис. 1 А). Многочисленные онлайн-видео, демонстрирующие этот эффект в идентичном расположении, собрали миллионы просмотров. Хотя не существует официальной литературы, которая могла бы дать физическое объяснение этому явлению, некоторые популярные научно-исследовательские источники в Интернете предполагают, что пара полушарий действует как своего рода короткая дипольная антенна ( 2 ) с проводимостью мокрого и богатого ионами мостика кожи будучи ключевым компонентом.


Рис. 1. A ) Плазма между виноградными полушариями, связанная кожным мостиком в традиционном расположении ( Фильм S1 ). ( B ) Весь виноград, слабо связанный своим весом в часовом стекле, также образует плазму ( Фильм S2 ). ( C ) Гидрогелевые шарики без кожи содержат> 99% воды и также образуют плазму после непродолжительного погружения в раствор NaCl ( фильм S3 ). ( D ) Нормализованные спектры излучения, собранные через дверцу микроволновой печи, демонстрирующие, что плазма инициируется разновидностями K и Na в винограде и Na в водяных шариках, пропитанных NaCl. Отличительный спектр плазмы от алюминиевой фольги показан для сравнения.

Фильм S1.
Видео о плазме, созданной путем облучения виноградных полушарий в коммерческой микроволновой печи традиционным способом.

Фильм S2.
Видеозапись плазмы, созданной облучением в коммерческой микроволновой печи из цельного (неразрезанного) винограда, образующего димер на часовом стекле.

Фильм S3.
Видео плазмы, созданной облучением в коммерческой микроволновой печи гидрогелевых шариков, образующих димер на часовом стекле. Гранулы сначала гидратировали в деионизированной воде, а затем замачивали в слабом рассоле NaCl в течение одной минуты перед съемкой.

Хотя объяснение, основанное на поверхностной проводимости, является априорно правдоподобным, мы представляем доказательства того, что эффект имеет объемное оптическое происхождение. В частности, этот эффект является результатом того, что водные диэлектрические объекты демонстрируют морфологически-зависимые резонансы (MDR) на микроволновых частотах. MDR являются синонимами резонансов Ми, которые описывают эффекты ближнего поля резонансных взаимодействий света с объектами в масштабе длины волны ( 3 , 4 ). Объекты могут быть проводящими или диэлектрическими, а также поглощающими или прозрачными, в зависимости от сложной диэлектрической проницаемости материала. Исследования пар проводящих частиц на наномасштабах и в микромасштабах показали повсеместное распространение горячих точек в точке контакта ( 5).). Такие поверхностные плазмонные резонансы (SPR) локализуются на поверхности ( 6 , 7 ) и используются для зондирования или возбуждения молекулярных частиц, которые слишком малы для разрешения традиционными оптическими методами ( 8 , 9 ). Тот факт , что недоглощающем, непроводящие диэлектрики могут образовывать MDR горячих точки собрали значительное внимание в последнее время ( 10 ⇓ ⇓ ⇓ - 14 ).

В этой статье мы представляем методы исследования резонансов Ми при поглощении диэлектриков в микроволновом режиме. С помощью термографических исследований мы предлагаем нетехнологичный метод для экспериментального измерения внутренних и затухающих электромагнитных концентраций ближнего поля с субволновым разрешением. Мы объединяем эти методы с конечно-элементным моделированием, чтобы показать прогрессию от изолированных резонансов до супермодов со связанными резонаторами в водных димерах. Образовавшиеся горячие точки представляют собой суперфокусировку порядка λ0/ 100, С помощью этих инструментов мы предоставляем подробное описание и объяснение образования плазмы из димеров фруктов в микроволновой печи, а также открываем песочницу для изучения нанокластерной фотоники с использованием поглощающих диэлектриков.

Формирование плазмы из водных димеров
Феномен «виноградной плазмы» в настоящее время ограничен в половых средах виноградными полушариями, обычно связанными полоской кожи. Естественно, что предыдущие объяснения этого явления неизменно включали роль кожи и открытой влажной поверхности в формирование плазмы. Однако мы обнаруживаем, что ни один из этих компонентов не является существенным для образования плазмы. Явление иллюстрируется на фиг. 1 A и Movie S1 . При внимательном рассмотрении фильма S1 видно, что плазма изначально образуется «под» скин-мостиком, в направлении объема полусферы, а не образуется на открытом конце и выталкивается из димера. Во-вторых, как показано на рис. 1 B и фильм S2цельные (неразрезанные) димеры винограда также образуют плазму, несмотря на отсутствие кожного мостика. Мы пришли к выводу, что повсеместное требование кожного моста в большинстве демонстраций служит средством поддержания контакта полушарий как димера. Как видно на фиг. 1 A - C , мы достигаем это в целом-сферы димеров путем размещения объектов на небольшой вогнутой часовым стеклом, где объекты аккуратно хранится вместе их весом.

Чтобы дополнительно продемонстрировать, что этот эффект имеет объемное оптическое происхождение, а не биофотонное происхождение, которое зависит от конкретной геометрии, состава и сосудистой системы винограда, мы демонстрируем образование плазмы в пропитанных NaCl шариках гидрогеля натрия полиакрилата, которые состоят из почти чистого воды ( рис. 1 С ). Интересно, что эти шарики имеют тенденцию колебаться при облучении (см. Кадры в 1:50 в фильме S4 ). В настоящее время мы исследуем их как управляемые колебания, возникающие в результате упругого эффекта Лейденфроста ( 15 )

Фильм S4.
Высокоскоростное видеоизображение димера винограда и димера гидрогеля, облученного в промышленной микроволновой печи, как воспламеняющей плазму, так и подвергающейся механическим колебаниям. Виноградный димер снят на скорости 1000 кадров в секунду; Димер гидрогеля снят на 2000 кадров в секунду

Наблюдение за тем, как в микроволновой печи загорелся кусочек фруктов, является захватывающим и запоминающимся. Следовательно, большое внимание ранее было сосредоточено на самой плазме, а не на источнике искрения. Как показано на рис. 1, D , спектры излучения из виноградной плазмы предполагают, что калийные и натриевые частицы, распространенные в кожуре винограда, ионизируются полем при сильной концентрации электрического поля вблизи точки контакта. Сами ионы резонируют с возбуждающим микроволновым излучением и могут развить каскад ионизации в воздухе, образуя плазму, нагретую микроволновым излучением, которая растет и становится независимой от димера, что можно увидеть в быстродействующем фильме S4., Однако сама плазма представляет второстепенный интерес, поскольку в конечном итоге она дает только пороговое указание концентрации в поле. Поскольку искрение часто носит стохастический характер, мы обратимся к другим методам определения характеристик, чтобы выяснить концентрацию поля в водных сферах и димерах, чтобы подтвердить объяснение, основанное на MDR.

Характеристика внутреннего поля
Лучший способ установить, что резонансы Ми участвуют в создании горячей точки димера, - это измерение распределений электрического поля как внутри диэлектрических сфер, так и в ближнем поле поверхности. Прямое измерение таких полей чрезвычайно сложно, главным образом потому, что горячие точки имеют субволновую длину. К счастью, тот факт, что водные объекты поглощают на сверхвысокочастотных частотах, может быть использован для того, чтобы тепловизионные изображения могли выступать в качестве косвенного инструмента измерения напряженности поля, интегрированного во времени. Важно отметить, что тепловые карты в основном представляют поверхностные температуры, а не внутренние температурные распределения ( 16). Таким образом, чтобы отобразить карты сечения центральной температуры в экспериментах с целой сферой и димером, объекты должны быть разрезаны пополам (либо перед облучением, либо после облучения) перед формированием изображения, как показано на рис. 2 А и 3 .


Рис. 2. Тепловые карты больших водяных шариков диаметром 5,5 см. ( A ) Распределение температуры после 4-секундного облучения димера гидрогеля, показывающее важность получения изображения из интересующего плоского участка. Объект i представляет собой целую сферу, показывающую только горячую точку на поверхности вблизи точки контакта; области ii и iii представляют собой сестринские сферы после облучения, разделенные пополам на i , демонстрирующие более сложное тепловое распределение в экваториальных плоскостях. ( B ) Распределение температуры мономера с крупными гранулами после облучения пополам, демонстрируя хорошо ограниченный радиальный режим, который является самым горячим в центре. Тепловые характеристики вне обозначенных областей интереса в А иB - отражения, паразитный нагрев или артефакты формирования изображения от других поверхностей в плоскости ниже сфер. Минимальные и максимальные температуры, которые представляют температуру окружающей среды и горячую температуру в линейной цветовой шкале, указаны в квадратных скобках. C и D - FEM моделирование геометрии A и B , соответственно, с 55-миллиметровым диаметром борта и расстоянием между бортами 1 мм. Стрелки показывают поляризацию электрического поля. Обратите внимание на точку доступа между димерами в C . «Высокое» значение в C составляет 0,35 нДж / м 3 и 0,29 нДж / м 3 в D для поля ввода 1 В / м.


Рис. 3. Эволюция мод в димерах виноградного полушария. A , D и G показывают оптическое изображение расположения полушария. На B , E и H показаны соответствующие тепловые изображения полушарий / димеров, полученные в течение 10 с после 3-секундного облучения. Сообщается, что максимальные температуры, определяемые как высокие в цветовой шкале, помогают качественно сравнивать каждый столбец. Точка доступ в H имеет значительно более высокую температуру , чем в B и E . C , F и япоказать FEM моделирование усредненной по времени плотности энергии. Значения в верхнем углу соответствуют верхнему значению на цветовой шкале и приведены в 0,1 нДж / м 3 для поля ввода 1 В / м. Низкие значения на несколько порядков меньше во всех случаях и, следовательно, фактически равны 0. Диаметр гранул составляет 16 мм, а расстояние между ними составляет 20 мм ( C ), 4 мм ( F ) и 0,5 мм ( I ).

В дополнение к тепловидению мы используем метод конечных элементов (FEM) (COMSOL Multiphysics) для моделирования взаимодействия поляризованного СВЧ-излучения с частотой 2,5 ГГц с равномерно поглощающими сферическими димерами воды и в целом подтверждаем, что тепловизионные карты отражают ожидаемое поле распределения из плазменного образования. Моделирование дает электромагнитную горячую точку с тем же поведением, что и экспериментальная горячая точка, присутствующая в системе димера винограда ( рис. 3 H и I ). Моделирование FEM также может быть связано с расчетами теплопередачи для получения моделируемых тепловых карт в таких системах. Эти карты показывают хорошее качественное согласие с экспериментальными результатами ( Приложение СИ , рис. S2). Подробную информацию о параметрах моделирования, включая тепловую связь, можно найти в Приложении СИ .

С тепловизором искрение больше не требуется, поскольку это может добавить побочные эффекты нагревания. Следовательно, в экспериментах по термическому картированию используются более низкие времена облучения, а гранулы гидрогеля гидратируются деионизированной водой и не замачиваются в физиологическом растворе. Это позволяет нам измерить влияние размера и разделения шариков на карты напряженности поля в системе ( рис. 2 и 3 ). Тепловая визуализация на месте показывает качественно очень похожую структуру на пострадиационную визуализацию, как показано в фильме S5 . Изучая более крупные водяные шарики, мы отмечаем четко выраженную центральную моду, присутствующую в изолированных сферах ( Рис. 2 B).). Само по себе это является очевидным свидетельством конструктивной интерференции и, следовательно, резонансной полости с низким Q: с глубиной проникновения ≈1,5 см - меньше, чем радиус больших шариков - можно ожидать, что простая модель поглощения даст тепловую рисунок, который горячее у поверхности, становится менее горячим к центру объекта по мере ослабления микроволнового излучения. Таким образом, тот факт, что водные сферы различных размеров обычно дают перевернутый рисунок горячей середины, свидетельствует об оптическом резонансе в изолированных водных сферах. Более того, когда мы контролируем разделение сфер внутри димера, мы видим четкую прогрессию модовой структуры от изолированных резонаторов к моде связи с концентрированной горячей точкой, как показано на рис. 3, Мы также наблюдаем, что более крупные шарики могут одновременно размещать супермодовую точку доступа вблизи точки соприкосновения и четко определенную моду в их центре ( рис. 2А ). Это согласуется с моделированием ( Рис. 2 C ), и в обоих случаях внутренние моды становятся менее заметными, когда центральная точка доступа становится сильнее. Как видно на рис. 2, С , центральные моды с небольшим мимолетным характером также взаимодействуют, слегка перемещаясь друг к другу вдоль оси димера.

Фильм S5.
Тепловая визуализация больших и малых отдельных водяных шариков (0: 16-1: 10) и димера водяных шариков (1: 15-2: 15) во время микроволнового облучения.

Эффекты поглощения
Ключевой вывод, полученный в результате наших экспериментов и симуляций, заключается в том, что подобные схемы поля сохраняются в широком диапазоне размеров димеров. Это объясняется сопутствующим поглощением, возникающим из-за высокого мнимого компонента комплексной диэлектрической проницаемости воды. При 2,45 ГГц и 20 ° C, ϵ~= ϵ1+ я ϵ2≈ 79 + я 10с ϵ1наиболее непосредственный вклад в показатель преломления, и ϵ2наиболее непосредственный вклад в коэффициент поглощения * ( 17 ). При моделировании пониженного коэффициента поглощения добротность димеров повышается, и внутри имитированных шариков обнаруживается зверинец сложных мод электромагнитного поля, что согласуется с другими отчетами для диэлектрических сфер ( 12 ). Однако, когда учитывается полное поглощение поведения димеров воды, широкий спектр мод, обнаруженных при более низком поглощении, размывается, оставляя относительно слабые радиально-симметричные внутренние моды и возникающую горячую точку, локализованную в проксимальной точке контакта.

Это поведение можно увидеть на рис. 4 , на котором показаны смоделированные полевые картины в димерах размером с виноград и больше как для полного диэлектрического поведения воды, так и для объектов с пониженным поглощением с эквивалентным показателем преломления. При более низком поглощении резонансы горячей точки являются резкими, и существует большая разница в силе моды между шариками с небольшими различиями в размерах. Например, смоделированные шарики с радиусом 9,5 мм отображают интенсивную горячую точку, которая отсутствует в шариках с диаметром 10 мм ( рис. 4 А и В).). В поглощающем случае сила моды остается более постоянной в широком диапазоне размеров. Это указывает на то, что образование горячих точек с поглощением является следствием расширения модовой структуры. Расширение приводит к более доступным интенсивным модам, подобным горячим точкам, а также к гомогенизации и подавлению внутренних мод высшего порядка. В широком диапазоне смоделированных размеров и разделений мы обнаруживаем, что поглощающие димеры поддерживают яркую горячую точку в точке контакта, даже когда горячая точка не обнаруживается при моделировании пренебрежимо малой поглощающей эквивалентности димеров.

Шестопалов Анатолий Васильевич:
ПРОДОЛЖЕНИЕ


Рис. 4. Влияние поглощения на появление мод электрического поля. Во всех случаях плоская волна 2,45 ГГц распространяется в направлении z ; поляризация вдоль х . Участки вырезают плоскости по осям , указанным в А и С . В А - С , гранулами слабопоглощающихами с й2= 0,2, в то время как D - F включает в себя полностью поглощающие диэлектрические свойства воды ( ϵ2= 10). Мы включаем гранулы размером с виноград, которые находятся на резонансе, r = 9,5 мм ( A и D ) и слегка нерезонансные r = 10 мм ( B и E ), а также гораздо более крупные шарики r = 24 мм ( C и F ) , Эти результаты показывают размывание мод, обнаруженных в A - C, и усиление аксиальной горячей точки в диапазоне длин волн.

Есть также тенденции с геометрией бус. Как правило, более мелкие шарики в непосредственной близости димера способствуют единой точке доступа между двумя сферами. Поскольку шарики разделены или увеличены в размерах, внутренние центральные моды лучше сосуществуют с горячей точкой димера и становятся более заметными ( Рис. 4 C ). Вымывание мод с повышенным поглощением иллюстрируется расширением резонансных пиков, как можно видеть на фиг.5 , которая представляет общую интегрированную энергию ЭМ в зависимости от размера димерных гранул. Как и следовало ожидать от резонатора с более низким Q, увеличение поглощения расширяет резонансы и уменьшает их интенсивность в объеме. Таким образом, такое поведение подтверждает экспериментальные наблюдения того, что индуцированная микроволновым излучением точка наблюдается в широком диапазоне размеров димера винограда и гидрогеля.


Рис. 5. Влияние поглощения на интегральные спектры интенсивности ЭМ для диэлектрических димеров. Параметр усиления поля определяется как суммарная усредненная по времени плотность энергии, интегрированная по блоку моделирования относительно той же волны через пустой блок, и наносится на график в зависимости от диаметра гранул для более низкого поглощения, ϵ2= 0,2( А ), и для реалистичного поглощения, ϵ2= 10( Б ) Параметр размера, S' = 2 πr n / λ0, параметризует размеры шариков в терминах длин волн, которые соответствуют периметру внутри шариков.

Функциональная зависимость комплексной диэлектрической проницаемости от температуры, частоты и солености обеспечивает важный путь для будущих исследований. Например, при 2,5 ГГц поглощающие свойства воды изменяются быстрее, чем показатель преломления между температурами от 0 ° C до 60 ° C ( 17 ). Таким образом, детали структуры резонансной моды, включая локализованные горячие точки, могут приводить к динамическим процессам разгона или самонастройки, возникающим в результате локального абсорбционного нагрева. Такое сложное поведение можно наблюдать с помощью живой тепловой видеосъемки на месте (например, Movie S5).). Вполне возможно, что горячая точка димера приводит к локальному нагреву, который резко уменьшает поглощение вблизи зазора, но не в объеме, что дает положительную обратную связь для интенсификации горячей точки. Универсальность поведения резонанса означает, что подробные термографические наблюдения динамики поля в водных структурах сантиметрового масштаба могут однозначно определять процессы нанофотонного рассеяния, которые в настоящее время не могут быть разрешены на оптических длинах волн.

Evanescent Hotspot Imaging с термобумагой
Моделирование FEM выявляет высокоинтенсивную точку поля в воздушном зазоре внутри димера в качестве вероятного инициатора плазмы в облученном винограде. Поскольку изображение с тепловизионной камеры основано на эффектах поглощения в объекте, метод нечувствителен к распределению поля вне димера. В попытке подтвердить как горячую точку в воздушном зазоре, так и отсутствие концентраций затухающего поля в других местах вокруг объектов, мы используем термоактивированную бумагу, которая резко темнеет при температуре ≈85 ° C ( 18 ). Мы используем полоски из термобумаги, чтобы контролировать внешнюю температуру отдельных сфер и димеров и одновременно создавать и контролировать зазор внутри димера, как показано на рис. 6, Хотя термобумага может указывать только, когда порог напряженности поля был превышен, и, таким образом, не обеспечивает непрерывную тепловую карту, подобную тепловой камере, эти эксперименты предоставляют ключевую информацию о поведении в ближнем поле водных диэлектрических объектов.


Рис. 6. Секция горячей точки ближнего поля с термоактивированной бумагой толщиной 7,5 м ( A и B ) Напряженность поля между двумя сортами винограда контролируется с помощью свернутой 15-слойной термобумаги, а периметр димера контролируется полосой термобумаги. ( C - E ) В качестве альтернативы, полоса термобумаги может быть обернута вокруг каждого винограда в димере для контроля периферийной и напряженности поля зазора. ( A ) 3-х облучение системы, показанной на рисунке Bдает четко очерченную горячую точку в зазоре 1.1 мм (прокладка), но на периферии (внешняя полоса) значительного нагрева не наблюдается. Секции промежутка, расположенные ближе всего к каждому объекту, показывают более низкую напряженность поля, чем в середине промежутка, а последовательность из 15 секций подразумевает трехмерную карту напряженности поля с пороговым значением. ( C ) Димер винограда, разнесенный на восемь слоев термобумаги, облучают в течение 2 с ( D ); отдельные сорта были повернуты из положения в C, чтобы показать аксиальную горячую точку. ( Е ) развернутая группа из левого объекта в D , показывающем секционирование напряженности поля в соответствии с . Желтый круг выделяет ту же физическую позицию в C - E, Оптические метки на Е меньше 1,5 мм и представляют крайнюю субволновую длину ( λ0/ 80) тепловая запись.

Когда димеры облучаются, они показывают четко определенную горячую точку в точке контакта в течение времени воздействия 1–3 с. Как видно на рис. 6 A и E , горячая точка, по-видимому, является наиболее интенсивным промежуточным промежутком между шариками, а не на их поверхности. Это поведение контрастирует с моделированием, которое показывает более сильные затухающие поля вблизи поверхности, когда присутствует значительный разрыв ( Рис. 3 F). Таким образом, возможно, что термический контакт между бумагой и поверхностью объектов предотвращает запись горячей точки на прокладках, ближайших к каждой поверхности. Тем не менее, моделирование показывает значительную фокусировку поля, охватывающую даже значительные промежутки, что подтверждается экспериментами с термобумагой. Мы используем две аналогичные геометрии, чтобы продемонстрировать это: во-первых, как показано на рис. 6 A и B , мы можем удерживать димер в контакте, оборачивая обе сферы вместе в термобумагу, а затем используя несколько прокладок из термобумаги между две сферы, чтобы сформировать промежуток фиксированной длины. Мы видим четкую прогрессию интенсивности, с самой высокой интенсивностью в шайбе средней щели. Мы можем также индивидуально обернуть каждый шарик в термобумаги ( рис. 6 Си D ) и записать ту же прогрессию, подтверждая высокую напряженность поля через весь промежуток ( рис. 6 E ).

Большая часть интереса к наноплазмонике заключается в способности создавать сильно ограниченные или сложно структурированные электромагнитные концентрации в субволновых областях. Независимо от того, используются ли такие горячие точки для прямой оптической обработки или структурирования поверхности или используются для зондирования / возбуждения объемов, которые слишком малы для доступа с помощью типичных дифракционных подходов, способность ограничивать свет отдельными областями субволновой области, исключая другие близлежащие области, является высокотехнологичной интерес. Оптическая запись, продемонстрированная димером винограда на термобумаге в воздушном зазоре, демонстрирует разрешение лучше, чем λ0/ 80, При контролируемом возбуждении - с точки зрения флюенса, времени и поляризации - будут достигнуты значительно меньшие характеристики. Хотя тепловая запись миллиметрового размера сама по себе не является научным достижением, демонстрация такого контроля с помощью микроволнового излучения в поглощающем диэлектрике является неожиданной. Выявленная полезность поглощения диэлектриков в данной работе расширяет круг потенциально полезных материалов. Тем не менее, более важными являются последствия для нанофотонных технологий на видимой и ультрафиолетовой шкалах длин волн, если бы были обнаружены полупрозрачные природные диэлектрики с высоким индексом или метаматериалы.

Геометрия поверхности и полые перепелиные яйца
Поскольку горячая точка наблюдается для такого широкого диапазона размеров и форм, могут сохраняться опасения, что эффект имеет происхождение в геометрии поверхности и проводимости. Хотя ранее существовавшие представления о том, что димер действует как проводящая короткая антенна, трудно окончательно опровергнуть, мы проводим эксперимент, который, по-видимому, исключает объяснение, основанное только на поверхности: мы повторяем эксперименты на термобумаге с димерами мелких перепелиных яиц. (диаметр вспомогательной оси ≈ 24 мм). Яйца индивидуально завернуты в однослойные полосы термобумаги и помещены в контакт вдоль их малой оси. После подтверждения того, что немодифицированные яйца показывают горячую точку в точке соприкосновения, яйца эвакуируются через отверстие на их вершине и возвращаются. Пустые яйцеклетки не воспроизводят горячую точку и при более длительном облучении в конечном итоге отобразить случайный нагрев поверхности. Когда яйца наполняются водой и восстанавливаются, воспроизводится точка димера (Приложение СИ , рис. S3 ). Визуально, конечно, невозможно определить, являются ли яйца пустыми или наполненными водой, но можно четко определить, как они взаимодействуют с микроволновым излучением. Таким образом, мы исключаем поверхностные эффекты, такие как проводимость, как значительный вклад в образование плазмы из винограда в микроволновой печи.

Резюме
Посредством комбинации видеографии, моделирования FEM, инфракрасного теплового изображения и термобумаги мы показали, что научно-популярное явление образования плазмы с виноградом в бытовой микроволновой печи объясняется поведением MDR. Виноград действует как сфера воды, которая из-за большого показателя преломления и небольшой абсорбции образует негерметичные резонаторы на частоте 2,4 ГГц. Резонансы Ми в изолированных сферах когерентно складываются при объединении таким образом, что водный димер отображает интенсивную горячую точку в точке контакта, которая достаточна для ионизации поля доступных ионов натрия и калия, воспламеняя плазму. Показано, что эта горячая точка пространственно ограничена масштабами субволнов, приближающимися к λ0/ 100,

Поскольку вода имеет больший показатель преломления на частоте 2,4 ГГц, чем любой известный диэлектрик на видимых частотах, можно исследовать уникальные резонансные геометрии в микроволновом режиме, которые в настоящее время недоступны на видимых длинах волн. Таким образом, эта работа, вероятно, откроет экспериментальные возможности для моделирования явлений нанофотонного резонанса с масштабированными объектами, освещенными на микроволновых частотах. Более непосредственные применения могут включать разработку пассивных всенаправленных беспроводных антенн, сверхвысокочастотное микроволновое возбуждение и формирование изображений и изобретение аналогов диэлектрических спазеров с микроволновой накачкой ( 19 ).

Подтверждения
Мы благодарим студентов Университета Трента Эмили Роуз Корфанты, Родион Гордзевич, Алан Годфри и Аарона Кертиса (Университет Торонто) за техническую поддержку и значительный вклад в исследования; Алессандро П. Бамбик (Университет Конкордии) за предварительный вклад в моделирование во временной области с конечной разностью; CMC Microsystems для расширенного кредита тепловизионного оборудования Keysight; Hoskins Scientific за кредит тепловизионного оборудования FLIR; и технологический факультет Университета Онтарио для предоставления в аренду оборудования для высокоскоростной визуализации Mega Speed. Эта работа была поддержана грантами Discovery 418388-2012 (для ADS) и 435875-2013 (для PB) Совета по естественным наукам и инженерным исследованиям; и Канадская программа научных исследований Grant CRC-NSERC-231086.

Сноски
↵ 1 Кому должна быть адресована переписка. Электронная почта: aaronslepkov@trentu.ca .
Авторский вклад: ADS задумал исследование; HKK, PB и ADS разработали исследования; HKK, PB и ADS провели исследование; HKK, PB и ADS предоставили новые реагенты / аналитические инструменты; HKK, PB и ADS проанализировали данные; и HKK и ADS написали газету.

Авторы объявили, что нет никаких конфликтов интересов.

Эта статья представляет собой прямое представление PNAS.

↵ * Явно, комплексный показатель преломления связан с комплексной восприимчивости через ñ=n+ik=ϵ~--√= ϵ1+ я ϵ2------√где n обычно упоминается как показатель преломления, а k, который отвечает за поглощение, упоминается как коэффициент экстинкции. При 20 ° C имеем n=8,9и к=0,56,

Эта статья содержит дополнительную информацию в Интернете по адресу www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818350116/-/DCSupplemental .

Copyright © 2019 Автор (ы). Опубликовано PNAS.
Эта статья открытого доступа распространяется под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) .

Рекомендации
1. ↵Мишо пиар( 1994 ) Веселье с виноградом: тематическое исследование . Доступно по адресу https://web.archive.org/web/20190130194653/http://pmichaud.com/grape/ . Accessed 2 февраля 2019 .Google ученый
2. ↵Muhlschlegel P( 2005 ) Резонансные оптические антенны . Science 308 : 1607 - 1609 .Аннотация / БЕСПЛАТНО Полный текстGoogle Scholar
3. ↵Mie G( 1908 ) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen . Annalen der Physik 330 : 377 - 445 .CrossRefGoogle Scholar
4. ↵Кувата Н ,Тамару Н ,Эсуми К ,Мияно К( 2003 ) Резонансное рассеяние света на металлических наночастицах: практический анализ за пределами приближения Рэлея . Appl Phys Lett 83 : 4625 - 4627 .Google ученый
5. ↵Ромеро I ,Aizpurua J ,Брайант Г.В. ,Гарсия де Абахо FJ( 2006 ) Плазмоны в почти соприкасающихся металлических наночастицах: сингулярный отклик в пределе касания димеров . Опт Экспресс 14 : 9988 - 9999 .CrossRefPubMedGoogle Scholar
6. ↵Хаттер Е ,Fendler JH( 2004 ) Использование локализованного поверхностного плазмонного резонанса . Adv Mater 16 : 1685 - 1706 .Google ученый
7. ↵Шуллер JA , и др.( 2010 ) Плазмоника для экстремальной концентрации света и манипуляций . Nat Mater 9 : 193 - 204 .CrossRefPubMedGoogle Scholar
8. ↵Майер К.М. ,Хафнер Дж. Х.( 2011 ) Локализованные поверхностные плазмонно-резонансные датчики . Chem Rev 111 : 3828 - 3857 .CrossRefPubMedGoogle Scholar
9. ↵Виллетс К.А. ,Ван Дуйн РП( 2007 ) Локализованная поверхностная плазмонно-резонансная спектроскопия и зондирование . Annu Rev Phys Chem 58 : 267 - 297 .CrossRefPubMedGoogle Scholar
10. ↵Bakker RM , et al.( 2015 ) Магнитные и электрические точки доступа с кремниевыми нанодимерами . Nano Lett 15 : 2137 - 2142 .CrossRefPubMedGoogle Scholar
11. ↵Мирошниченко А.Е. , и др.( 2015 ) Неизлучающие анапольные моды в диэлектрических наночастицах . Nat Commun 6 : 8069 .CrossRefPubMedGoogle Scholar
12. ↵Albella P , et al.( 2013 ) Спектроскопия с малыми потерями в электрическом и магнитном поле с субволновыми димерами кремния . J Phys Chem. C 117 : 13573 - 13584 .Google ученый
13. ↵Zywietz U , et al.( 2015 ) Электромагнитные резонансы димеров наночастиц кремния в видимой области . ACS Фотон 2 : 913 - 920 .Google ученый
14. ↵Девилез А ,Замбрана-пуялто икс ,Стаут б ,Бонод N( 2015 ) Подражание локализованным поверхностным плазмонам с помощью диэлектрических частиц . Phys Rev B 92 : 241412 .Google ученый
15. ↵Waitukaitis SR ,Zuiderwijk A ,Суслов А. ,Coulais C ,Ван Хеке М( 2017 ) Соединение эффекта Лейденфроста и упругих деформаций с мощным подпрыгиванием . Nat Phys 13 : 1095 - 1099 .Google ученый
16. ↵Фольмер М ,Моллманн КП( 2011 ) Инфракрасная тепловизия: основы, исследования и приложения . Eur J Phys 32 : 1431 .Google ученый
17. ↵Ван Дж ,Нгуен А.В.( 2017 ) Обзор данных и прогнозов диэлектрических спектров воды для расчетов поверхностных сил Ван-дер-Ваальса . Adv Colloid Interf Sci 250 : 54 - 63 .Google ученый
18. ↵Brother Mobile Solutions( 2012 ) Руководство по термобумаге: выбор, использование и архивирование, Технический отчет. Брат Мобильные Решения, Брумфилд, Колорадо .Google ученый
19. ↵Oulton RF , et al.( 2009 ) Плазмонные лазеры в глубоком субволновом масштабе . Природа 461 : 629 - 632 .CrossRefPubMedGoogle Scholar

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Перейти к полной версии