Происхождение нефти газа: от теории происхождения к технологиям поисков > Экзотические теории происхождения, нетрадиционные методы и технологии поисков и разведки нефти и газа

Эфиродинамическая гипотеза происхождения нефти Ацюковского

<< < (163/202) > >>

Шестопалов Анатолий Васильевич:

https://youtu.be/JAp-Sc4666g

Шестопалов Анатолий Васильевич:
Лаборатория в Эстонии на $1 000 000


https://www.deneum.com/




Meteorits are impossible as rocks cannot fall from the Heaven
French Academy of Science 1772
Breakthroughs happen when you question dogmas.
Метеориты невозможны так как камни не могут падать с неба
Французская Академия наук 1772
Прорывы случаются, когда вы подвергаете сомнению догмы.


https://youtu.be/d02Gkh7p7hU




https://youtu.be/TWZ-uXQTF_s



https://youtu.be/OKRt3fa4lfU

Шестопалов Анатолий Васильевич:
   Третьяков Ю.Д. Процессы самоорганизации в химии материалов // Успехи химии, 2003, том 72, вып. 8. - с.731–763
https://www.uspkhim.ru/php/getFT.phtml?jrnid=rc&paperid=836&year_id=2003
https://yadi.sk/i/-O_7PYITq8aggA

Шестопалов Анатолий Васильевич:
https://habr.com/ru/post/406637/


Насыпав песок на колеблющуюся упругую пластинку, можно увидеть формирование фигур Хладни. Они часто служат примером «естественной красоты» физических явлений, хотя за ними стоит довольно простая физика резонансного возбуждения стоячих волн. И мало кто обращает внимание на любопытную особенность этих фигур: линии на них избегают пересечений, будто их отталкивает некая сила. Давайте попробуем понять, какая же физика скрывается за этим отталкиванием и как она связана с квантовой теорией хаоса.

Стоячие волны

Как мы знаем, упругие тела могут совершать довольно сложные колебания, при которых они сжимаются, растягиваются, изгибаются и скручиваются. Тем не менее, колебания любого упругого тела можно представить как комбинацию накладывающихся друг на друга более простых нормальных колебаний. Вот так выглядят несколько нормальных колебаний простейшего упругого тела – одномерной натянутой струны.

Каждое нормальное колебание представляется стоячей волной, которая, в отличие от бегущей волны, стоит на месте и обладает своим рисунком распределения амплитуд колебаний по пространству. На этом рисунке можно выделить пучности – точки, где амплитуда колебаний достигает максимумов, и узлы – неподвижные точки, в которых амплитуда колебаний равна нулю. Кроме того, каждая такая волна колеблется со своей собственной частотой. В случае струны, как можно заметить, частота колебаний стоячей волны увеличивается с ростом числа узлов и пучностей.


Нормальные колебания круглой мембраны с закрепленными краями:


Зеленым цветом показаны узловые линии:


У круглой мембраны узловые линии, представляющие собой окружности и отрезки вдоль радиусов, могут пересекаться под прямыми углами. Если же края мембраны имеют произвольную форму, нахождение частот нормальных колебаний и картин их узлов и пучностей превращаются в задачу, решаемую только с помощью компьютера.

Профили амплитуды колебаний стоячих волн на мембранах в форме квадрата с отверстием, снежинки Коха и поверхности котенка.

Уравнения, описывающие колебания тонкой упругой пластинки, отличаются от уравнений колебания мембраны, поскольку пластинка обладает собственной жесткостью, в то время как мембрана мягкая и пружинит лишь за счет натяжения внешними силами. Однако здесь тоже существуют наборы нормальных колебаний, рисунки которых существенным образом зависят от формы границ.

Фигуры Хладни

Как было сказано выше, в общем случае колебания тела представляют собой комбинацию целого набора возбужденных в нем нормальных колебаний. Явление резонанса позволяет выборочно возбудить какое-то одно нужное нам нормальное колебание – для этого следует раскачивать тело при помощи внешней силы с частотой, равной собственной частоте нормального колебания.

На двух видео ниже показана типичная схема получения фигур Хладни: упругая пластинка прикрепляется в центре к генератору механических колебаний, частоту которых плавно увеличивают. Нормальные колебания пластинки со своими картинами узлов и пучностей возбуждаются при резонансном совпадении частоты генератора с собственными частотами этих колебаний (собственные частоты показаны на видео в левом нижнем углу).


https://youtu.be/wvJAgrUBF4w
Здесь версия этого же видео, на которой частоты нормальных колебаний можно оценить на слух.
А здесь немного красивее.

https://youtu.be/hIgmiDnmVdU

Картины узлов и пучностей мы видим благодаря тому, что воздушные потоки вблизи колеблющейся пластинки сдувают песчинки к узловым линиям стоячей волны(*). Таким образом, фигуры Хладни показывают нам картины узловых линий нормальных колебаний упругой пластинки.


Несколько фигур Хладни на верхней деке гитары http://newt.phys.unsw.edu.au/music/guitar/patterns.html

Еще пример нормальных волн – это стоячие волны на поверхности воды. Они описываются уравнением, отличающимся от уравнений колебания пластинок и мембран, но следуют таким же качественным закономерностям, и с их помощью можно получать аналоги фигур Хладни


Микрочастицы на поверхности воды в сосудах разной формы. Черная линия показывает масштаб 2 миллиметра https://dx.doi.org/10.1002/adma.201402079

Классический хаос

Итак, мы видели, что в случае круглой мембраны узловые линии – теоретически! – замечательно пересекаются, в то же время на фигурах Хладни на квадратных или более сложных пластинках узловые линии избегают пересечений. Чтобы понять причину этих закономерностей, нам придется сделать небольшой экскурс в теорию хаоса.

Классический хаос – это свойство механических систем, заключающееся в чрезвычайно сильной зависимости траектории их движения от изменений начальных условий. Эта зависимость известна также как «эффект бабочки». Яркий пример хаотического поведения можно встретить при попытках предсказания погоды: система уравнений, описывающая движение атмосферы и океанов, не позволяет дать достаточно точные прогнозы на больших временах из-за экспоненциально нарастающих ошибок, обусловленных малыми неточностями исходных данных(**).

Явление хаоса было открыто и популяризовано метеорологом и математиком Эдвардом Лоренцем, обнаружившим, что два расчета прогноза погоды, начинающиеся с очень близких начальных условий, сначала почти неотличимы друг от друга, но с какого-то момента начинают кардинально расходиться.


Два расчета Эдварда Лоренца, исходящие из близких начальных значений 0.506 и 0.506127  http://tikalon.com/blog/blog.php?article=2013/chaos_50

Простейшими системами, на примере которых удобно изучать хаос, являются бильярды – участки плоской поверхности, по которым без трения может катиться шарик, абсолютно упруго отскакивающий от жестких стенок. В хаотических бильярдах траектории движения шарика, имеющие незначительные отличия в самом начале, в дальнейшем существенно расходятся. Пример хаотического бильярда – изображенный ниже бильярд Синая, представляющий собой прямоугольный бильярд с круговым препятствием в центре. Как мы увидим, именно за счет этого препятствия бильярд становится хаотическим.


Две экспоненциально расходящиеся траектории шарика в бильярде Синая  http://www.chaos-math.org/

Интегрируемые и хаотические системы

Механические системы, не являющиеся хаотическими, называются интегрируемыми, и на примере бильярдов можно наглядно увидеть разницу между интегрируемыми и хаотическими системами.

Прямоугольный и круглый бильярды являются интегрируемыми благодаря своей симметричной форме(***). Движение шарика в таких бильярдах – это просто комбинация двух независимых периодических движений. В прямоугольном бильярде это движения с отскоками от стенок по горизонтали и по вертикали, а круглом это движение вдоль радиуса и угловое движение по окружности вокруг центра. Такое движение легко просчитываемо и не показывает хаотического поведения.


Траектории движения шарика в интегрируемых бильярдах.

Бильярды более сложной формы, не обладающие столь высокой симметрией, как у круга или прямоугольника, являются хаотическими(****). Один из них мы видели выше – это бильярд Синая, в котором симметрия прямоугольника разрушается круговым включением в центре. Также часто рассматриваются бильярд «стадион» и бильярд в форме улитки Паскаля. Движение шарика в хаотических бильярдах происходит по весьма запутанным траекториям и не раскладывается на более простые периодические движения.


Траектории движения шарика в хаотических бильярдах «стадион» и «улитка Паскаля».

Здесь можно уже догадаться, что наличие пересечений между линиями на фигурах Хладни определяется тем, имеет ли пластинка форму интегрируемого или хаотического бильярда. Это наглядно видно на фотографиях ниже.








https://youtu.be/iWn1qJNQjq0














https://youtu.be/CGiiSlMFFlI


https://youtu.be/PACvvJc46-0


https://youtu.be/r_4T49hsKUo







Шестопалов Анатолий Васильевич:
Выпуск журнала "Радиоэлектроника. Наносистемы. Информационные технологии" (РЭНСИТ) полностью посвященный ХЯС

   http://rensit.ru/vypuski/2017/1/

Т9, №1
2017
ОТ РЕДАКЦИИ
НАУЧНО-ТЕХНОЛОГИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ
Грачев В.И., Губин С.П.
http://rensit.ru/vypuski/article/200/9(1)3-4.pdf

ЯДЕРНАЯ ФИЗИКА
LENR В РОССИИ
Рухадзе А.А., Грачев В.И.
http://rensit.ru/vypuski/article/200/9(1)5-7.pdf

ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР И СВЯЗАННЫЕ С НИМ СОСТОЯНИЯ С БОЛЬШИМ ЗНАЧЕНИЕМ НЕОПРЕДЕЛЕННОСТИ
Андреев В.А.
http://rensit.ru/vypuski/article/200/9(1)8-20.pdf

УНИВЕРСАЛЬНЫЙ МЕХАНИЗМ РЕАЛИЗАЦИИ ЯДЕРНЫХ РЕАКЦИЙ ПРИ НИЗКОЙ ЭНЕРГИИ
Высоцкий В.И., Высоцкий М.В.
http://rensit.ru/vypuski/article/200/9(1)21-36.pdf

О МЕХАНИЗМАХ НИЗКОЭНЕРГЕТИЧЕСКИХ ЯДЕРНО-ХИМИЧЕСКИХ ПРОЦЕССОВ
Тимашев С.Ф.
http://rensit.ru/vypuski/article/200/9(1)37-51.pdf

СИНТЕЗ И ТРАНСМУТАЦИЯ СТАБИЛЬНЫХ И РАДИОАКТИВНЫХ ИЗОТОПОВ В БИОЛОГИЧЕСКИХ СИСТЕМАХ
Корнилова А.А., Высоцкий В.И.
http://rensit.ru/vypuski/article/200/9(1)52-64.pdf

НЕЛИНЕЙНОЕ ТУШЕНИЕ РАДИОАКТИВНОСТИ ВОДНЫХ РАСТВОРОВ СОЛЕЙ НУКЛИДОВ ПРИ ЛАЗЕРНОЙ АБЛЯЦИИ НАНОЧАСТИЦ МЕТАЛЛОВ
Андреев С.Н., Шафеев Г.А.
http://rensit.ru/vypuski/article/200/9(1)65-73.pdf

НИКЕЛЬ-ВОДОРОДНЫЕ РЕАКТОРЫ: ТЕПЛОВЫДЕЛЕНИЕ, ИЗОТОПНЫЙ И ЭЛЕМЕНТНЫЙ СОСТАВ ТОПЛИВА
Пархомов А.Г., Алабин К.А., Андреев С.Н., Забавин С.Н., Соболев А.Г., Тимербулатов Т.Р.
http://rensit.ru/vypuski/article/200/9(1)74-93.pdf

МНОГОЯДЕРНЫЕ РЕАКЦИИ В КОНДЕНСИРОВАННОМ ГЕЛИИ
Мышинский Г.В.
http://rensit.ru/vypuski/article/200/9(1)94-105.pdf

ПЕРЕХОД ВИСМУТА В СВИНЕЦ В ИМПУЛЬСНОМ ЭЛЕКТРОМАГНИТНОМ ПОЛЕ
Балакирев В.Ф., Крымский В.В., Плотникова Н.В.
http://rensit.ru/vypuski/article/200/9(1)106-112.pdf

РОССИЙСКАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ ПО ХОЛОДНОЙ ТРАНСМУТАЦИИ ЯДЕР, 1993-2017
Бажутов Ю.Н.
http://rensit.ru/vypuski/article/200/9(1)113-115.pdf

СЕМИНАР "ХОЛОДНЫЙ ЯДЕРНЫЙ СИНТЕЗ И ШАРОВАЯ МОЛНИЯ" В РУДН
Самсоненко Н.В.
http://rensit.ru/vypuski/article/200/9(1)116-117.pdf


Выпуск полностью (без обложки) http://rensit.ru/vypuski/article/200/9(1)1-128.pdf

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Перейти к полной версии