ГЕОЛОГИЧЕСКИЕ ПОДТВЕРЖДЕНИЯ ДОСТОВЕРНОСТИ РЕКОНСТРУКЦИЙ НДС
Приведем некоторые данные, подтверждающие наши выводы по генезису и строению трещинных систем в фундаменте МБТ.
О ПРОСТИРАНИИ ДАЙКОВОГО ПОЯСА МБТ.
Для интрузивных массивов шельфа Южного Вьетнама характерно наличие даек эффузивных пород. По данным [1] на МБТ отдельными скважинами вскрыты дайки толщиной до 10 м и более, или системы даек. Такие мощные дайки, вероятнее всего, являются корнями олигоценовых вулканов, образовавших лавовые покровы на поверхности фундамента и в разрезе терригенной толщи олигоцена. Более мелкие дайки могут быть связаны с проявлением трещинного вулканизма. Для изучения площадного развития трещинного вулканизма, как одного из элементов неоднородности гранитоидного массива, был использован коэффициент интенсивности трещинного вулканизма (α), равный отношению в разрезе скважины суммарных толщин даек (Нэф) к вскрытой толщине гранитоида (Н): α = Нэф/Н ×100 м. На карте по величине α выделяется ряд участков максимальных значений коэффициента α, которые объединяются в единую зону, пересекающую массив с севера на юг (скв. 80, 88, 918, 914, 405, 409, 424) примерно под углом 45° к основной системе разломов. К этой же зоне приурочены и основные «окна», по которым происходит слияние верхней и нижней зон развития коллекторов в гранитоидном массиве. Высокие значения коэффициента α отмечаются также в районе скважин 415, 423, 409, 435, 430, 405, 914, 910, 918, 809, 88, 81, 80, 803, 813, 445. Участки интенсивного развития трещинного вулканизма хорошо согласуются с зонами максимальной продуктивности на месторождении. Распространяясь под углом ~45° к основным системам разломов, зона повышенных значений α практически контролируется системами второстепенных разломов, что указывает на различный возраст заложения картируемых сейсмикой разломов. Очевидно, что основные разломы имеют более древнее заложение относительно второстепенных разломов, образование или обновление которых произошло в олигоценовое время и с которыми связаны процессы проявления трещинного вулканизма [1].
Комментарий.
Определения толщины даек по данным ГИС, не имея данных об углах пересечения их скважиной нельзя считать строгими. При вертикальном падении даек, пересечение их наклонными скважинами будет давать завышение значения толщин даек (Нэф) и тем большее, чем ближе проекция скважины к вертикальной.
Под понятием второстепенных разломов завуалированы выделяемые нами новейшие трещины отрыва и малоамплитудные разрывы растяжения (сбросы), связанные с сечением (плоскостью) максимальных и средних нормальных напряжений σ1σ2.
Образование (обновление) второстепенных разломов связывается с олигоценом, что на наш взгляд завышает возраст проявления трещинного вулканизма. Проявление трещинного вулканизма и образование лавовых покровов (внутрипластовых траппов) на поверхности фундамента и, главное, в разрезе терригенного олигоцена, нужно скорее связывать с миоцен-плиоценовым этапом тектонической активности (завершающие фазы альпийского и неотектонического этапа) площади, а не со спокойным этапом прогибания и накопления отложений терригенного олигоцена и нижнего миоцена.
Независимо от этих комментариев, участки максимальных значений коэффициента α (коэффициент интенсивности трещинного вулканизма – является мерой интенсивности растяжения и проницаемости земной коры на этапе формирования комплекса малых интрузий), объединяющиеся в единую зону и пересекающие гранитоидный массив с севера на юг под углом ~45° к основной системе разломов, совпадают с картируемыми нами в осадочном чехле новейшими разломами ССЗ простирания. При сколовой природе основных разломов северо-северо-восточного простирания (ССВ 20-40°), угол ~45° равен углу скола и образует биссектрису острого угла для системы сопряженных сколов с субмеридиональной ориентировкой оси максимальных главных сжимающих напряжений (Рис.3,4).
О ПРОСТИРАНИИ ОСЕЙ НАПРЯЖЕНИЙ.
По данным [2] азимутальная ориентация даек позволяет установить пространственное расположение осей главных нормальных напряжений и выделить области, запрещенные для положения осей σ1 (наибольшее из растягивающих или наименьшее из сжимающих) и σ3 (наименьшее из растягивающих или максимальное из сжимающих). У авторов принята противоположная нашей индексация осей напряжений. В пределах батолита МБТ базальтовые интрузии (дайки) были установлены по отрицательным значениям коэффициента отражений и подтверждены низкими амплитудами на кривых акустического каротажа, аномалиями естественной радиоактивности и плотности в скважинах вскрывших интрузии. В.В.Поспелову и О.А.Шнип «… удалось трассировать пояс наиболее вероятной концентрации дайкового роя в направлении с северо-востока на юго-запад (20°…200°) вдоль основных разломов FI, II. По-видимому, в период окончательного формирования батолита как геологического тела именно в этом направлении наиболее активно проявились напряжения сжатия и следующие за ними периоды релаксации».
Комментарий.
В вариантах интерпретации В.А.Кошляк [1] и В.В.Поспелова, О.А.Шнип [2], получены различные решения в отношении простирания дайкового пояса (трещинного вулканизма): ССЗ 340° и ССВ 20° соответственно, отличающегося на ~45°. Простирание ССВ 20° вдоль разломов фундамента (FI, II) связано с устойчивым во времени (Mz-Kz) проявлением максимальных касательных напряжений, идентифицируется главными сдвигами по фундаменту и не может отвечать проницаемому сечению трещин отрыва, связанному с плоскостью максимальных и средних нормальных напряжений σ1σ2. В противоположность этому, сечение ССЗ 340°, связываемое [1] с простиранием дайкового пояса и трещинного вулканизма, в пределах МБТ совпадает с проницаемым сечением мезозойского вулканизма (многоактное формирование плутонических тел различной основности), позднекайнозойского базальтового вулканизма (формирование комплекса малых интрузий), гидротермальной деятельности (формирование разнотемпературного комплекса гидротермальных минеральных ассоциаций) и плиоцен-четвертичного нефтяного диапиризма (формирование залежей нефти). Длительное функционирование проницаемого сечения ССЗ 340° является следствием устойчиво-го положения (повторяемости) поля напряжений в пределах МБТ.
ПЕТРОТИПЫ И МОРФОЛОГИЯ ИНТРУЗИВНОГО ТЕЛА.
Для выяснения простирания проницаемых сечений в фундаменте МБТ важную информацию можно почерпнуть при правильной интерпретации карты распространения петротипов фундамента (Рис.3). Как известно, породы фундамента МБТ характеризуются значительной петрографической неоднородностью. Особенно большой пестротой отличается Северный блок, включающий граниты, гранодиориты, адамеллиты, кварцевые монцодиориты, кварцевые диориты, и диориты. Центральный блок сложен преимущественно гранитами и в петрографическом отношении представляет собой достаточно однородное образование. Южный свод представлен гранитами, гранодиоритами и кварцевыми монцодиоритами (Арешев, Донг, Киреев, 1996; Гаврилов, 2001).
По результатам петрографического изучения в фундаменте МБТ выделяются три группы плутонических пород с преимущественным развитием: 1) гранитов; 2) гранодиоритов; 3) кварцевых амфибол-биотитовых монцодиоритов и диоритов (Рис.3). Распространение этих групп плутонических пород фундамента связывается соответственно с Центральным, Южным и Северным блоками МБТ.
По результатам радиологических определений и петрографического анализа в составе пород фундамента МБТ различают три разновозрастных интрузивных магматических комплекса: Хон-Хоай (триасовый возраст), Дин-Куан (юрский возраст) и Ка-На (меловой возраст). Комплекс Ка-На, пред-ставленный гранитами, слагает практически весь Центральный блок и лишь фрагментами Северный блок. Комплекс Дин-Куан, сложенный преимущественно гранодиоритами, распространен в западной части Северного блока, а комплекс Хон-Хоай, представленный кварцевыми амфибол-биотитовыми монцодиоритами и амфибол-биотитовыми диоритами, занимает восточную часть Северного блока. Примечательно, что распространение интрузивных комплексов совпадает с определенными полями развития различных групп пород согласно содержанию кремнезема – основного петрохимического классификационного параметра. Комплекс Ка-На совпадает с кислыми, комплекс Дин-Куан – с умеренно-кислыми и комплекс Хон-Хоай – со средними породами.
Комментарий.
На фоне закономерностей возрастного и петрографического районирования по-род фундамента, совершенно очевидно телескопическое строение и вложенность трех временных систем внедрения плутонических тел, имеющих различный возрастной и петрографический состав (Рис.3). С учетом глубины денудационного срезания наиболее приподнятой центральной апикальной части плутонического тела, в пределах Центрального блока вскрывается наиболее глубокий и молодой комплекс Ка-На (мелового возраста), погруженный и последовательно перекрытый на крыльевых и периклинальных погружениях выступа фундамента более древними комплексами Дин-Куан (юрского возраста) и Хон-Хоай (триасового возраста). Характеризуясь наименьшей температурой плавления, гранитовый комплекс Ка-На завершает плутоно-магматическую фазу функционирования мантийного очага. В кайнозое унаследованность в функционировании мантийного очага проявляется главным образом в гидротермальной деятельности, определившей характер строения и нефтенасыщения порово-трещинного пространства фундамента МБТ.
Учитывая существенное влияние глубины эрозионного среза на полноту и площадное распространение различных петротипов фундамента, видимая зональность является в значительной степени искаженной денудационными процессами и значительной амплитуды сдвиговыми деформациями. Даже в этих условиях, наблюдая всего лишь фрагмент батолита ограниченной площади, мы можем расшифровать зональность распространения различных петротипов фундамента. Во-первых, очевидна срезанность апикальной части батолита, связанной со сводовой частью Центрального и Северного блоков фундамента МБТ; во-вторых, видно трехслойное строение вскрытого эрозией и скважинами батолита и; в-третьих, зональность распространения различных петротипов фундамента также указывает на близмеридиональное (ССЗ) простирание длинной оси батолита, северное крыло которого срезано ССВ сдвигом и смещено за пределы площади работ 3D (Рис.3).
О СООТНОШЕНИИ ВЕЛИЧИН КОЭФФИЦИЕНТА ПРОНИЦАЕМОСТИ.
Соотношение величин коэффициента проницаемости и, соответственно осей анизотропии проницаемости, вдоль горизонтальных осей в сечениях Х и Y без знания соотношения величин боковых давлений оценить невозможно. По Е.М.Смехову (1962) для анизотропного трещинного коллектора проницаемость вдоль и вкрест ортогонально ориентированных систем трещин может отличаться на порядок. А по данным У.Файф и др. (1981) при оживлении разломов вертикальная проницаемость разреза увеличивается на три порядка. При гидроразрыве пласта проницаемость трещин увеличивается на 10 порядков. Эти и другие факты требуют дифференцированного подхода при оценке проницаемости трещинных систем различной ориентировки. Таким образом, порядок величин коэффициента анизотропии проницаемости в различных сечениях может составлять от 1:10 до 1:10 в степени 10.
По результатам гидропрослушивания скважин фундамента месторождения Белый Тигр (В.Ф.Штырлин, 2004), диапазон величин скоростей импульса составляет от 29,6 до 136,6 м/час. По этим замерам неоднородность пласта в разных направлениях может достигать 1:4,5 (по исследовани-ям 1993 года это отношение составляло 1:3).
Дополнительное косвенное представление о величине коэффициента анизотропии проницаемости трещинного коллектора дает отношение длинной (50,0 км) и короткой (12,5 км) осей депрессионных впадин проседания осадочного чехла, как деформационных структур растяжения над выступом фундамента. Значение 4,0 находится между 3,0 и 4,5 и дает независимую и близкую к реальной величину коэффициента проницаемости и анизотропии трещинного коллектора.
Прямое представление о величине коэффициента анизотропии проницаемости трещинного коллектора дает отношение длинной (35,0 км) и короткой (7,0 км) осей между крайними продуктивными скважинами (скв.90-7001 и скв.479-478), как соотношение длинной и короткой осей разведан-ной части залежи фундамента. Значение 5,0 близко к реальной величине коэффициента анизотропии проницаемости трещинного коллектора для Центрального блока, хотя представляется заниженным для северной и южной части в силу неразведанности месторождения. По совокупности этих данных можно утверждать, что коэффициент анизотропии проницаемости трещинного коллектора для фундамента месторождения Белый Тигр доказательно составляет величину 1:5 и предположительно может достигать величины 1:10. При этом величина коэффициента анизотропии проницаемости будет увеличиваться от центральной части месторождения (1:5) к его периклинальным частям от 1:7 для Северного блока до 1:12 для Южного блока. Результаты гидропрослушивания скважин фундамента (В.Ф.Штырлин, 2004) подтверждают наши выводы и о простирании проницаемых систем трещин (ССЗ 340-350° – ЮЮВ 160-170°). Максимальная скорость гидродинамического импульса между возбуждающими и реагирующими скважинами составляет 136,6 м/час и отвечает паре скважин 405-406, азимут простирания между которыми ССЗ 340°– ЮЮВ 160°.
Таким образом, анализ фактических и опубликованных данных подтверждает наши представления и выводы по преобладающему простиранию проницаемых сечений трещинных систем для резервуара нефти в фундаменте месторождения Белый Тигр. Данные о простирании дайкового пояса месторождения Белый Тигр, закономерности возрастного и петрографического районирования пород фундамента и морфология интрузивного тела, локализация гидротермальной деятельности и залежи нефти на теле фундамента, свидетельствуют о длительном функционировании проницаемого сечения ССЗ 340°-ЮЮВ 160° вследствие устойчивого положения (повторяемости) регионального поля напряжений в пределах месторождения Белый Тигр. По совокупности данных можно предполагать, что коэффициент анизотропии проницаемости трещинного коллектора для фундамента МБТ доказательно составляет величину 1:5 и предположительно может достигать величины 1:10. При этом величина коэффициента анизотропии проницаемости может увеличиваться от центральной части месторождения (1:5) к его периклинальным частям от 1:7 для Северного блока и до 1:12 для Южного блока.
ЗАКЛЮЧЕНИЕ
По результатам анализа трещинных систем и реконструкциям напряженно-деформированного состояния пород фундамента МБТ выполнен прогноз проницаемых сечений и решены частные вопросы изучения количественных параметров трещинных систем.
1. Восстановлено распределение осей для палеонапряжений и напряжений новейшего этапа формирования структуры и трещинных систем МБТ для рифтового, надвигового и сдвигового типов НДС земной коры.
2. Выполнена генетическая классификация трещин и разломов МБТ.
3. Выполнена классификация по относительной раскрытости и характеру гидродинамической связанности трещинных систем фундамента МБТ.
4. Полученные результаты служат основой построения гидродинамической модели залежи нефти на основе полученных данных о неоднородности фильтрационных свойств трещинных кол-лекторов в фундаменте МБТ.
Литература
1. Кошляк В.А. Гранитоидные коллекторы нефти и газа. – Уфа: Тау, 2002. - 256 с.
2. Поспелов В.В., Шнип О.А. О роли интрузий в реконструкции полей напряжений и разгрузки в кристаллическом фундаменте. – Тезисы докладов 2-й Международной конференции «Геодинамика нефтегазоносных бассейнов», том 2. M., 2004, c. 164-165.
3. Тимурзиев А.И. Методика поисков и разведки залежей нефти и газа в низкопроницаемых коллекторах (на примере Южного Мангышлака) // Геология нефти и газа. 1985. №1 c.9-16.
4. Тимурзиев А.И. Обоснование структурно-геоморфологического метода прогноза локальных зон новейшего растяжения. – Советская геология, №1, 1989, c.69-79.
5. Тимурзиев А.И. Технология прогнозирования фильтрационной неоднородности трещинных коллекторов на основе реконструкций напряженно-деформированного состояния земной коры по результатам интерпретации сейсморазведки 3D. - Доклады конференции к 75 летию ВНИГРИ. СПб, ВНИГРИ, 2004, c.128-139.
6. Тимурзиев А.И. Реконструкции напряженно-деформированного состояния горных пород по результатам интерпретации сейсморазведки 3D (на примере Еты-Пуровского месторождения) // Доклады VIII международной конференции. М. РГГРУ. 2007. с. 355-358.
7. Тимурзиев А.И. Технология прогнозирования трещиноватости на основе трехмерной геомеханической и кинематической модели трещинного коллектора. Геофизика, №3, 2008.
8. Тимурзиев А.И. Кинематика и закономерности ориентировки разрывных нарушений и осей напряжений осадочных бассейнов Северного полушария.- Отечественная геология, 2009, №6, с.52-59.
9. Тимурзиев А.И. Анализ трещинных систем осадочного чехла и фундамента месторождения Белый Тигр (Вьетнам). - Экспозиция нефть-газ. 5Н (11) октябрь 2010, с.11-20.
Источник: Тимурзиев А.И. Реконструкции напряженно-деформированного состояния и прогноз проницаемых сечений для пород фундамента месторождения Белый Тигр (Вьетнам). Экспозиция нефть-газ. 6Н (12) декабрь 2010, с.6-13.
http://deepoil.ru/images/stories/docs/avtorsk/raboty/txt_B_67.pdf.