Нетрадиционные источники УВ: генезис, закономерности, методы прогноза, поисков и освоения > Нефтегазоносность кристаллического фундамента
Месторождение Белый Тигр: полигон отработки поисковых технологий на фундамент
Тимурзиев Ахмет Иссакович:
Рис.7. Месторождение Белый Тигр. Суммарные розы-диаграммы простирания разломов: а - фундамента для глубинного интервала 3500-4800 м; б - осадочного чехла для глубинного интервала 2000-3500 м; в - сводная диаграмма простирания разломов фундамента и осадочного чехла для глубинного интервала 2000-4800 м по данным сейсморазведки 3D.
Тимурзиев Ахмет Иссакович:
ТРЕЩИННЫЕ СИСТЕМЫ МБТ ПО ДАННЫМ FMI
Данные по трещиноватости анализировались по всем скважинам, где проводились измерения FMI (в основном на Центральном блоке и лишь частично на Северном блоке).
Анализировались в основном азимуты трещин, раскрытость (апертура) и трещинная пористость. В отчетах по исследованиям методом FMI в породах фундамента выделяются следующие основные типы трещин: непрерывные (Continuous), прерывистые (Discontinuous), кавернозные (Vuggy), брекчиевидные (Brecciated), залеченные (Healed).
По азимутам простирания трещин построено 20 карт ориентировки трещин в виде роз-диаграмм для глубинных срезов в диапазоне 3300-5300 м с шагом 100 м. По данным FMI была построена таблица азимутов простирания и сводная роза-диаграмма простирания трещин (Рис.8). По результатам построений выделяется несколько преобладающих систем трещин, среди которых господствующими являются: СЗ 330-350° и СВ 60-70°, подчиненными - СВ 0-20° и СВ 40-50°. Всего идентифицируется до восьми систем трещин.
Отмечается постоянство простираний трещин для отдельных скважин на всем интервале глубин: скв.465 (СВ 70-80°), скв.484 (ССВ 20-30° и СВ 60-80°), скв.485 (ССВ 20-30° и СВ 45°), скв.479 (СВ 60-80°), свидетельствующее о том, что скважина вскрывает систему трещин одного генезиса и возрастного диапазона. По скважинам Центрального блока преобладают трещины северо-восточного простирания, в то время как по скважинам Северного блока преобладают трещины северо-западного простирания.
Анализ данных FMI показал, что апертура трещин сама по себе не может являться характеристикой коллекторских свойств пород, так как залеченность трещин цеолитами и глинами сильно влияет на их коллекторские свойства. В скважинах Северного блока сильнее развиты процессы цеолитизации и каолинитизации пород, приводящие к закупорке трещин и ухудшающие ФЕС пород, что является главной причиной меньшей продуктивности скважин Северного блока по сравнению с Центральным блоком. Наиболее перспективными с точки зрения сохранности коллекторских свойств являются породы фундамента с кавернозным или брекчиевидным строением трещин, мало затронутые процессами залечивания.
ВЫВОДЫ.
1. Азимутальное распределение трещин по данным FMI подтверждает установленные сейсморазведкой связи по простиранию основных систем разломов.
2. В фундаменте МБТ преобладают системы трещин СЗ и субмеридионального простирания (~60%), характерные для разломов осадочного чехла (молодые открытые трещины), на втором месте по распространенности трещины СВ и субширотного простираний (~40%), характерные для разломов фундамента (древние залеченные трещины).
3. Установленные связи свидетельствуют о единой природе физических процессов и деформаций, определивших образование разломов и трещиноватости в единых силовых полях тектонических напряжений. Направление СВ 20-40° совпадает с простиранием структуроформирующих разломов фундамента, направление СЗ 330-350° соответствует ориентировке региональной транспрессии альпийской фазы тектогенеза и простиранию молодых разломов и открытых трещин осадочного чехла и фундамента.
Рис.8. Месторождение Белый Тигр. Суммарная роза-диаграмма простирания трещин в фундаменте по скважинным данным (метод FMI). Длинная ось эллипса совпадает с плоскостью σ2σ1, образуемой осями средних (σ2) и максимальных (σ1) главных нормальных сжимающих напряжений и направлением главных систем проницаемых трещин в фундаменте.
Тимурзиев Ахмет Иссакович:
ТРЕЩИННЫЕ СИСТЕМЫ МБТ ПО ИССЛЕДОВАНИЯМ TERMOCHANNEL
Метод TermoChannel использует термодинамические исследования для определения геометрических характеристик значительных по размерам супертрещин. Предполагается, что по этим супертрещинам осуществляется приток флюида в скважину из областей питания (Плынин и Штырлин, 2006). Анализировались данные по всем скважинам (всего 25) в пределах Центрального и Северного блоков фундамента (на Южном блоке исследовалась одна скважина). По технологии метода ThermoChannel определяются следующие параметры трещин: глубинная отметка пересечения со стволом скважины, глубинная отметка зоны питания, отход зоны питания от ствола, длина, угол падения, раскрытость, ширина, расход флюида в зоне притока.
Изучалась зависимость расхода флюида в зоне притока от раскрытости трещин. По ряду скважин при одинаковой раскрытости трещин приток был различным. В этих случаях бралось среднее значение раскрытости трещин. Расчетный коэффициент корреляции составил 0,51. График регрессии показывает, что с увеличением раскрытости увеличивается и приток флюида. Однако при значениях раскрытости больше 1,5 мм наблюдается сильный разброс значений притока, что может свидетельствовать о залеченности трещин с раскрытостью более 1,5 мм. Анализ показал, что раскрытость трещин Северного блока меньше, чем Центрального блока. В скважинах Северного блока максимальная раскрытость трещин равна 1,022 мм, в скважинах Центрального блока она достигает 2,679 мм.
Для анализа падения трещин по методу ThermoChannel строилась гистограмма углов падения трещин. Преобладают субвертикальные (60-70°), редки крутонаклонные (40°) и вертикальные (80-90°) макротрещины. По методу ThermoChannel (Плынин и Штырлин, 2006) преобладающий угол падения макротрещин составляет 79,5-81,0° относительно горизонта (субвертикальны).
Углы падения макротрещин анализировались также в несколько ином представлении, как углы отклонения от вертикали. В этом случае не учитывается информация о местонахождении зоны питания, поскольку нами решалась задача по выяснению геометрии систем макротрещин, а не гидродинамики. На гистограмме распределения углов отклонения макротрещин от вертикали уверенно выделяется диапазон 20-30° (частота встречаемости около 50%), на втором месте диапазон 10-20° (частота встречаемости около 25%). Следующие по значимости углы отклонения макротрещин от вертикали – 80-90° (близвертикальные). Присутствует класс пологонаклонных макротрещин с углами отклонения больше 50°. В таком варианте представления данных ThermoChannel более 75% трещин имеют углы отклонения макротрещин от вертикали в диапазоне 10-30°.
В рамках изучения количественных параметров трещин по данным ThermoChannel был построен график зависимости углов падения от абсолютной глубины вскрытия макротрещин стволом скважины. Анализ графика показывает, что во всем диапазоне глубин вскрытия преобладают крутопадающие макротрещины со значениями углов падения 60-70°.
ВЫВОДЫ.
Метод TermoChannel использовался для количественной оценки распределения углов падения трещин.
1. По данным FMI падение трещин носит хаотичный характер, что связано с разнообразием типов трещин, выделяемых FMI (согласные, брекчиевидные и др.), в то время как метод ThermoChannel связывает приток флюида в скважину с определенным типом – отдельными фильтрующими макротрещинами значительной протяженности, которые являются каналами, идущими от зон питания.
2. Важнейший вывод по результатам анализа методом ThermoHydroChannel сводится к установлению убедительной закономерности, согласно которой наиболее представительная выборка среди классов трещин по углам падения (субвертикальные – 90-60°, наклонные – 60-30°, субгоризонтальные – 30-0°) связана с субвертикальными (60-70°) и вертикальными (~80°) трещинами.
3. Значимость этого вывода усиливается тем обстоятельством, что метод ThermoChannel фиксирует не валовую трещиноватость, а открытые фильтрующие трещины.
Тимурзиев Ахмет Иссакович:
ТРЕЩИННЫЕ СИСТЕМЫ МБТ ПО ОПИСАНИЮ КЕРНА СКВАЖИН И ШЛИФОВ
По результатам макроописания керна и изучения больших шлифов (Гаврилов, 2001) изучались особенности пустотного пространства на микроуровне. Изучение параметров единичных микротрещин и микротрещиноватости, как поля пространственной организации микротрещин, является конечным этапом в ряду наших системных наблюдений линейных дислокаций горных пород различного масштаба. Особенности структуры порово-трещинной среды во взаимоотношении со стадиальными эпигенетическими процессами и характером заполнения ее природными минеральными ассоциациями способны пролить свет на место и роль разновозрастных трещинных систем различной природы и генезиса при формировании коллектора, резервуара и залежи нефти МБТ.
ПЕТРОТИПЫ И МОРФОЛОГИЯ ИНТРУЗИВНОГО ТЕЛА.
Породы фундамента МБТ характеризуются значительной петрографической неоднородностью (Арешев, Донг, Киреев, 1996; Гаврилов, 2001). Особенно большой пестротой состава отличается Северный блок, включающий граниты, гранодиориты, адамеллиты, кварцевые монцодиориты, кварцевые диориты и диориты. Центральный блок сложен преимущественно гранитами и в петрографическом отношении представляет собой достаточно однородное образование. Южный свод представлен гранитами, гранодиоритами и кварцевыми монцодиоритами. По результатам петрографического изучения выделяются три группы плутонических пород с преимущественным развитием: 1) гранитов; 2) гранодиоритов; 3) кварцевых амфибол-биотитовых монцодиоритов и диоритов. Согласно описания пород фундамента, распространение выделенных трех групп плутонических пород связывается с Центральным, Южным и Северным блоками общепринятого районирования фундамента МБТ.
По результатам радиологических определений и петрографического анализа (Гаврилов, 2001) в составе пород фундамента различают три разновозрастных интрузивных магматических комплекса: комплекс Хон-Хоай (триасового возраста), комплекс Дин-Куан (юрского возраста) и комплекс Ка-На (мелового возраста). Комплекс Ка-На (граниты) слагает Центральный блок и лишь фрагментами Северный блок. Комплекс Дин-Куан (гранодиориты) распространен в западной части Северного блока, а комплекс Хон-Хоай (кварцевые амфибол-биотитовые монцодиориты и амфибол-биотитовые диориты) занимает восточную часть Северного блока.
Распространение интрузивных комплексов совпадает с полями развития различных групп пород по содержанию кремнезема – главного петрохимического классификационного параметра. Комплекс Ка-На совпадает с кислыми породами, комплекс Дин-Куан – с умеренно-кислыми и комплекс Хон-Хоай – со средними породами.
С учетом закономерностей возрастного и петрографического районирования пород фундамента, очевидно телескопическое строение и вложенность трех временных систем внедрения плутонических тел, имеющих различный петрографический состав. С учетом глубины эрозионного среза наиболее приподнятой центральной части плутонического тела, в пределах Центрального блока вскрывается наиболее молодой комплекс Ка-На (мел), погруженный и последовательно перекрытый на крыльевых и периклинальных погружениях выступа фундамента более древними комплексами Дин-Куан (юра) и Хон-Хоай (триас).
Характеризуясь наименьшей температурой плавления гранитовый комплекс Ка-На завершает плутоно-магматическую фазу функционирования глубинного мантийного очага. На платформенном этапе развития унаследованность в функционировании мантийного очага проявляется главным образом в гидротермальной деятельности, определившей характер строения и нефтенасыщения порово-трещинного пространства пород фундамента МБТ.
СИСТЕМАТИЗАЦИЯ ДАННЫХ ПО СТРОЕНИЮ ПУСТОТНОГО ПРОСТРАНСТВА.
В керне и шлифах всех скважин вскрывших фундамент наблюдаются многочисленные трещины.
Интенсивность распределения трещин в породах неравномерная, в одних случаях это редкие трещины, в других порода разбита на многочисленные обломки размером 1-8 см, сцементированные более мелкими обломками того же состава.
Трещины пересекаются или образуют систему параллельных трещин с расстоянием между собой 1-3 см. В большинстве случаев трещины в шлифах имеют кривую форму, пересекаются друг с другом или связаны между собой кавернами.
Трещины разноориентированные, преимущественно вертикальные. Углы падения изменяются от нескольких градусов (субгоризонтальные) до 80-90°, статистически наиболее представлен диапазон в 60-70°. Горизонтальные трещины встречены в единичных образцах.
По данным статистических характеристик физических свойств пород фундамента данные открытой пористости пород фундамента по керну характеризуют, главным образом, плотную, непроницаемую матрицу или блоковую часть коллектора. Крупные трещины и каверны, играющие главную роль в процессе фильтрации флюидов в породах, практически отсутствуют на образцах малых размеров.
Раскрытость трещин по керну находится в широком диапазоне значений от 0,1 мм до 3-4 мм, иногда доходит до 2-3 см. Практически все трещины в керне с раскрытостью более 1,5 мм являются минерализованными или техногенными.
Преобладающие размеры трещин в шлифах в пределах 0,1-2,25 мм по длине и 0,01-0,1 мм по ширине. Отдельные трещины достигают 7-15 мм по длине и 0,6 мм по ширине. 8. Практика изучения трещин в шлифах, пропитанных смолой под поляризационным микроскопом, показывает, что в подсчет пустотности вовлекаются трещины и поры с поперечными размерами более 0,01 мм.
По результатам изучения шлифов, пропитанных смолами, среднее значение площади пустотного пространства в гранитах Северного и Центрального блоков составляют:
Поры, % Каверны, % Трещины, % Сумма, %
Северный блок 0,97 0,34 1,07 2,38
Центральный блок 0,56 0,06 0,90 1,52
С глубиной пустотное пространство пород сокращается. Для Центрального блока до глубины 500 м от кровли фундамента общая площадь пор, трещин и каверн составляет 2,10-2,43%, а с глубины 500 м общая пустотность резко уменьшается до величин 0,37-0,79%.
Преобладающая часть описанных по керну и шлифам трещин залечена вторичными минералами (кальцит, цеолит, кварц, битум, асфальт и др.).
Даже относительно свежие крепкие породы (скв.431, инт. 4490,0-4492,0 м, скв.813, инт. 4863,1-4864,5 м, скв.903, инт. 4460,6-4460,9 м) разбиты единичными субвертикальными трещинами и подвержены вторичной минерализации (кальцит, цеолит, битум).
Свежие, не нарушенные трещинами и гидротермальными процессами образцы пород фундамента (скв.115, интервал 4000-4005 м), не содержат ни первичных, ни вторичных пустот и являются абсолютно непроницаемыми.
Катаклазированные участки пород и околотрещинные участки сильно изменены гидротермальными процессами. Зоны дробления представлены тектонической брекчией и мелкораздробленной массой породы, обломки покрыты слоем цеолита, кальцита, в ряде случаев асфальтита (скв.110, 1106).
Растворение термальными водами пород приводит к уменьшению их объемной плотности. Для свежих малоизмененных / измененных пород она составляет (г/см3): граниты – 2,65 / 2,41; гранодиориты – 2,69 / 2,35; кварцевые монцодиориты – 2,66 / 2,39.
Гидротермальный процесс является важным фактором формирования вторичной пустотности. В то же время гидротермальная деятельность существенно ограничивает или даже исключает фильтрацию флюидов из-за постепенного осаждения и залечивания трещин вторичными минералами. По этой причине керны из окрестностей крупных разломов фундамента зачастую кальматированы и служат гидродинамическими экранами.
ВЫВОДЫ.
1. Независимо от типа породы и густоты трещин различных систем характер их заполнения вторичными минералами одинаков: цеолит, кальцит, кварц, битум, асфальт.
2. Из всего кернового материала почти не встречаются трещины, которые не были бы выполнены кальцитом и цеолитом. Особенно большое содержание цеолита и кальцита наблюдается в зонах катаклаза, где эти минералы цементируют обломки пород.
3. Толщина цеолитовых выполнений трещин обычно составляет 0,2-3 мм, толщина трещин с кальцитом может достигать 2-3 см.
4. Содержание цеолитов в трещиноватых зонах керна составляет в среднем около 5%, в зонах катаклаза содержание цеолитов достигает 30-40%.
5. Гидротермальная деятельность в породах фундамента происходила в широком диапазоне температур, в несколько тектономагматических этапов, создавая различные минеральные парагенезы (наиболее распространенные ломонтин (цеолит) и кальцит).
6. Температура кристаллизации наиболее распространенных минералов-индикаторов гидротермальной деятельности для гранитов фундамента (самородная цинкистая медь – 600 °С, эндогенный ангидрит – 400 °С, барит – 250-350 °С, самородная сера – 120-150 °С) и метасоматические процессы карбонитизации и цеолитизации (80-120 °С) свидетельствуют о средне- и низкотемпературном режиме аутигенного минералообразования на поздней стадии остывания и низкотемпературного флюидного (гидротермального) магматизма.
7. Анализ температурной шкалы гидротермальной минерализации позволяет восстановить последовательность выделения минеральных ассоциаций и заполнения пустотного пространства пород фундамента на самых поздних стадиях тектонической эволюции гранитного резервуара МБТ: а) ангидрит, барит; б) кальцит, кварц; в) карбонаты, цеолит; г) битум, асфальт; д) легкая нефть.
8. Разломы и крупные трещины, обеспечивая циркуляцию растворов, одновременно являлись очагами разгрузки гидротермальных систем. В соответствии с этим, наибольшие изменения, связанные со вторичной минерализацией, происходили в приразломных зонах оперяющих трещин и брекчирования пород, а также в зонах пересечения разломов, образующих тектонические швы и узлы. Этим объясняется сильная минерализация этих зон.
9. В ряду минеральная – битумная – нефтяная – открытая трещина, последняя является наиболее молодой и при отсутствии признаков минерализации или насыщения УВ имеет техногенное происхождение (трещины разгрузки) и не могут служить для определения коллекторских свойств пород и гидродинамических расчетов.
Тимурзиев Ахмет Иссакович:
АНАЛИЗ СООТНОШЕНИЙ ТРЕЩИННЫХ СИСТЕМ МБТ
Мы последовательно прошли путь от изучения количественных параметров разломов (полевые наблюдения и метод сейсморазведки 3D), крупных мегатрещин (супертрещин) и макротрещин (методы FMI и TermoChannel) к изучению мезотрещин и микротрещин по результатам макроописания керна и изучения больших шлифов. Будучи разномасштабными объектами проявления одних и тех же тектонофизических процессов, разноранговые линейные дислокации горных пород являются телескопически вложенными системами, подчиненные единым законам деформации и фрактальности (блоковой делимости) геосреды и повторяющие основные закономерности пространственной организации разноуровенных систем. Наблюдая и вычленяя из обилия фактического материала эти закономерности, мы пытались найти причинно-следственные связи генетического характера, которые позволят понять природу тектонических деформаций МБТ и прогнозировать их неоднородность.
Независимо от масштаба изученных трещинных систем, обнаруживается устойчивая повторяемость в количественных параметрах их пространственной организации. Во всех случаях, где представлялось возможным изучение ориентировки трещинных систем, обнаруживается существование двух устойчивых максимумов простирания. Первый наиболее выраженный в густоте распространения трещин максимум простирания связан с северо-западной ориентировкой трещинных систем в азимутальном створе СЗ 340-350°. Второй максимум простирания связан с северо-восточной ориентировкой трещинных систем в азимутальном створе СВ 20-40°. С небольшими отклонениями эти максимумы находят проявление по результатам всех методов исследований и для всех масштабных генераций трещинных систем. Следовательно, эти два максимума простирания трещинных систем связаны с двумя наиболее значимыми тектоническими этапами развития МБТ. Как показывает анализ, максимум северо-восточной (СВ20-40°) ориентировки трещинных систем совпадает с широтной транспрессией завершающей орогенической фазы киммерийского тектогенеза, определившей формирование высокоамплитудных структуроформирующих сбросов с правой кинематикой движений. Максимум СЗ ориентировки трещинных систем совпадает с последним этапом тектонической активизации региона, связанной с завершающей фазой альпийского тектогенеза, охватившей все Тихоокеанское побережье и вызвавшей формирование новых (обновление старых) трещинных систем МБТ, вызвавшей формирование (обновление) комплекса малых интрузий и батолитов бассейна Кыу-Лонг.
В соответствии с временными соотношениями этих двух трещинных систем, значимость второй для раскрытости и проницаемости трещин не вызывает сомнений. По результатам описаний керна и шлифов установлено, что трещинные системы ранних генераций залечены вторичными минералами и, если они не обновлены неотектоническими движениями, промыслового интереса не представляют.
Таким образом, система молодых трещин северо-западной ориентировки (СЗ 340-350°) представляется единственно открытой и проницаемой для фильтрации нефти в пластовых условиях МБТ. Эта трещинная система связана с проявлением сбросов и трещин отрыва поздней генерации в условиях становления горизонтального сдвигового поля напряжений завершающей альпийской фазы тектогенеза.
Во всех случаях, когда изучалась ориентировка трещинных систем в вертикальном сечении, также обнаруживается существование двух устойчивых максимумов углов падения трещин. Первый, наиболее выраженный в густоте распространения максимум в углах падения трещин связан с полого наклонными (60-70°) системами трещин. Второй максимум в углах падения связан с вертикальными (80-90°) системами трещин. С небольшими отклонениями эти максимумы в углах падения трещин находят проявление по результатам всех методов исследований и для всех масштабных генераций трещинных систем. Следовательно, эти два максимума в углах падения трещинных систем связаны с двумя наиболее значимыми генетическими типами трещин МБТ.
Углы падения полого наклонных трещин (60-70°) образуют с вертикальной осью (осью образца керна) угол скола α больше 45°, идентифицируя падение плоскости скалывания и вертикальное положение плоскости σ2σ1, образуемой осями средних и максимальных главных нормальных сжимающих напряжений во время структуро-(трещино-) образования. По генетической классификации системы наклонных трещин (60-70) связаны со сколами вдоль площадок действия максимальных тангенциальных напряжений (τmax), а системы вертикальных трещин (80-90°) с отрывами вдоль плоскости (σ2σ1) действия средних и максимальных главных нормальных сжимающих напряжений соответственно в условиях сдвигового поля напряжений. Обоснованию этого вывода приводится в следующей статье автора, посвященная реконструкциям напряженно-деформированного состояния пород фундамента МБТ по результатам выполненного анализа трещинных систем.
ЗАКЛЮЧЕНИЕ.
Завершая анализ трещинных систем, констатируем главный фактически обоснованный вывод о существовании преобладающей системы открытых и проницаемых вертикальных трещин (80-90°), генетически связанных с условиями растяжения (трещины отрывы) и совпадающих с плоскостью σ2σ1, образуемой осями средних и максимальных главных нормальных сжимающих напряжений субмеридиональной (СЗ 340-350°) транспрессии завершающей фазы альпийского тектогенеза. Пространственно и генетически связанные с горизонтальными сдвигами фундамента и структурами растяжения земной коры эти системы формируются на выступах фундамента, определяя морфологию насыщения вертикальных флюидодинамических (и нефтяных) колонн.
Результаты интерпретации трещинных систем МБТ служили основой реконструкций напряженно-деформированного состояния (НДС) горных пород и обоснования модели строения залежи нефти в фундаменте МБТ как следствие механизма скрытой эксплозивной разгрузки глубинных флюидов на структурах растяжения земной коры, связанных с горизонтальными сдвигами фундамента. В соответствии с этими выводами рассчитывались параметры анизотропии проницаемости трещинного коллектора, необходимые для построения фильтрационной модели залежи нефти в фундаменте МБТ. Результаты выполненных исследований будут представлены в следующих публикациях автора.
Список литературы
1. Арешев Е.Г., Донг Ч.Л., Киреев Ф.А. Нефтегазоносность гранитоидов фундамента на примере месторождения Белый Тигр. Геология и геолого-разведочные работы. 1996.
2. Гаврилов В.П. Влияние петрографической зональности фундамента месторождения Белый Тигр на степень продуктивности и нефтенасыщенности гранитов. Отчет по договору №31-05/85. Нефтегазэкспертиза. М. 2001.
3. Плынин В.В., Штырлин В.Ф. Совершенствование технологии термогидродинамической визуализации трещин в нефтеносных гранитах. Нефтяное хозяйство. №5. 2006. 78-80.
4. Sung Jin Chang, Nguyen Tien Long. An observation of the fracture systems of the Southern onshore Vietnam. PetroVietnam Conference on the oil and gas industry on the eve of 21 century. 2000. Vol.1, pp 524-534.
Источник: Тимурзиев А.И. Анализ трещинных систем осадочного чехла и фундамента месторождения Белый Тигр (Вьетнам). Экспозиция нефть-газ. 5Н (11) октябрь 2010, с.11-20.
http://deepoil.ru/images/stories/docs/avtorsk/raboty/txt_B_49.pdf.
Навигация
Перейти к полной версии