Последние сообщения

Страницы: [1] 2 3 ... 10
1
Сила тяжести направлена к центру системы, в связи с чем планета приобрела шарообразную форму, при этом, первичные абиогенные нефти и УВ, легкоплавкие, легко летучие элемент и их соединения были вытеснены в земную кору магматического происхождения. Область ядра менее дгеазирована.
Подъемная (выталкивающая) сила Архимеда. Плотность газовой смеси (водород-метан, пары нефти) даже при давлении мантии будет меньше плотности воды. А вот плотность самой мантии превышает плотность воды более чем в три раза. Значит, подъемная сила газовой смеси объемом в 1 кубический километр составит 2,5 миллиарда тонн  И к тому же этот газ раскален до 600-8000 С.
Мантийная нефть локализуется в земной коре,так-как:
Плотность: Осадочные породы — 2.4-2.5 г/см3; гранитов и большинства метаморфических пород — 2.7 г/см3; основных изверженных пород — 2.9 г/см3. Средняя плотность земной коры — 2.8 г/см3. Средняя плотность Земли составляет 5.52 г/см3.
Осадочный слой является производным разложения алюмосиликатов, - изверженных пород, с которыми связывается синтез нефти и сопровождающих ее газов, т.е., нефть, - минерал абиогенного происхождения.
По В.В. Богацкому, 1986: «Зоны повышенной деформации разделяют относительно спокойные области. Они же являются коллекторами магмы, флюидов, гидротермальных растворов. Размер зон повышенной деформации очень различен, а внутри каждой зоны повышенной деформации могут быть выделены зоны более низкого порядка, разделенные относительно спокойными участками. Учитывая такую многостепенность деформированных зон, можно сделать единой закономерностью все тектонические взаимоотношения - от планетарных до локальных. Геологическая закономерность, которая здесь сформулирована, есть отражение двух физических законов:
1. при любой деформации твердого и вязкого тела возникает разделение его на зоны, в которых сосредотачиваются преимущественно деформации, и на разделяющие эти зоны слабо деформированные блоки, причем в таких зонах и блоках могут быть отдельные зоны и блоки низшего порядка. Самым низшим порядком зон повышенной деформации являются некоторые из решеток кристаллов. Верхний порядок зависит от размеров деформируемого тела. В ходе деформации возникают новые зоны, а старые упрочняются, но с возрастанием деформаций они могут снова оживать.
2. Зоны повышенной деформации отличаются повышенной степенью проницаемости для магмы, флюидов, газов, гидротерм, волн напряжения».
Связующим звеном геопроцессов, является волна энергии.
Е = mc2
где, E - энергия системы, m - её масса, c-скорость света.
Энергия: (Е), единицы измерения, система СИ-(Дж), система СГС — (эрг).
E=mc2 — формула А. Эйнштейна, указывает на эквивалентность массы вещество и энергии.
Теорема доказанная И. Р. Пригожиным (1947), термодинамики неравновесных процессов:
«при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропии». «Между главными сейсмическими рубежами и рубежами минеральных преобразований, есть хорошее согласование (корреляция), на глубинах:
410, 520, 670, 840, 1700, 2000, 2200-2300 км) [10].
1. На рубеже 670 км, шпинелеподобный рингвудит трансформируется в ассоциацию:
железо - магниевого перовскита и магнезиовюстита.
2. На рубеже 850-900 км, пироп (магниево-алюминиевый силикат), преобразуется в ромбический перовскит (железо-магниевый силикат) и твердый раствор корунд-ильменита.
3. На рубеже 1700 км. происходит изменение свойств различных кристаллов.
4. На глубине 2000 км, фиксируется образование плотных модификаций кремнезема и начинаются структурные изменения вюстита.
5. На глубине 2200-2300 км, происходит структурная трансформация корунда» [Ю.М. Пущаровский]. «Одновременное проявление (по В.В. Белоусову, 1975), на поверхности материков различных эндогенных режимов, «указывает на гетерогенность теплового поля Земли: в одно и то же время тепловые потоки в разных местах разнятся по своей интенсивности, следовательно, тепловые потоки меняют свою интенсивность как в пространстве, так и во времени».
Системы глубинных разломов контролируют миграцию вещества в системе Земли, расположение источников энергии и формирование архитектуры тектоносферы.
Атомы углерода отличаются от атомов других элементов тем, что способны образовывать устойчивые химические связи друг с другом. Они могут связываться в цепи разной длины. Цепи бывают линейные и разветвлённые. Атомы углерода соединяются также в циклы разной величины.
С разделением геологического пространства зоной интенсивной степени проницаемости, обладающей высоким энергетическим потенциалом, связывается формирование системы: сводовое поднятие - зона Беньофа - океаническая впадина.
Разделенные области обладают не только различными энергетическими потенциалами, но и разной степенью проницаемости тектоносферы, что повлияло на формирование гранито-метаморфического слоя системы Земли. Волна энергии исходящая из области ядра, также способствует процессу расширения системы Земли. Системы глубинных разломов контролируют миграцию вещества в системе Земли, расположение источников энергии и формирование архитектуры тектоносферы.
На Земле существует более чем 40 000 нефтяных и газовых месторождений мира всех размеров. Из этих месторождений 94 процента  сосредоточены менее чем в 1500 гигантских и крупных природных скоплениях происхождение которых практически одинаково.
Литература.
устьянцев уВ.Н. Энергетика, дегазация автоколебательной системы Земли. О едином волновом механизме структурообразования и генерации минералогических ассоциаций в блоках земной коры. ISBN: 978-5-02-040199-0, Москва, Издательство Наука, 2019.
 Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике. — : «ОНИКС», «Мир и Образование», 2006. — 1056 с. — 7000 экз. 
Климов А. Н. Ядерная физика и ядерные реакторы. — Москва: Энергоатомиздат, 1985. — С. 352.
Mineral synthesis concept Ustyantsev V.N. uvn_50@mail.ru Annotation. The article substantiates the synthesis of mineral raw materials at a quantitative level and reveals the role of noble gases. Key words: mantle, earth's crust, empirical laws of physics.
2
PM - примитивная мантия (на время 4.5 млрд. лет). BSE - однородный хондритовый резервуар (современный). PREMA (Prevalent Mantle Composition) - наиболее примитвный состав мантии, сохранившийся с самой ранней стадии развития Земли. PHEM - (Primitive Helium Mantle) - примитивная гелиевая мантия. FOZO - нижняя мантия как результат дифференциации BSE. LM - нижняя мантия. UM - верхняя мантия. DM - деплетированная (истощенная) мантия. EM - обогащенная мантия. HIMU - обогащенная (U+Th/Pb) мантия, образовавшаяся в первые 1.5 - 2.0 млрд. лет. С - континентальня кора в целом. A — атмосфера.
«Повсеместное присутствие избыточного гелия-3 в мантийных породах доказывает, что Земные недра все еще дегазируют первичные летучие элементы» .(Буйкин А.И., 2005).

В.И. Вернадский, 1934 о гелии:
«Все нахождения связаны с нефтяными месторождениями и с углеводородными газами их сопровождающими. Во всех месторождениях есть возможность констатировать или массивы более богатых рассеянными ураном и торием кислых гранитных пород или их разрушения — детритовых пород, которые могут явиться источником гелия»

Благородные газы образуются в земной коре и мантии, в процессе радиоактивного распада определенных элементов, таких как уран и торий, то-есть, связаны на генетическом уровне.. Эти радиоактивные элементы подвергаются ядерному распаду, испуская альфа- и бета-частицы, а также гамма-излучение. В рамках этого процесса распада, образуются изотопы благородны газов, которые дают энергию, которая способствует дифференациици вмещающего вещества. Энергетическая подпитка системы способствует процессу минерало образования.
В Солнечной планетарной системе отмечается закономерность: с удалением от Солнца, уменьшается количество тяжелых элементов, а количество легких элементов (водород, гелий, углеводород, вода и др.), увеличивается.
«Вариации изотопного состава благородных газов связаны с процессами, контролирующими  распределение калия, урана и тория - на сегодняшний день главных тепло генерирующих нуклидов на Земле.
Изотопная геохимия и геохимия рассеянных элементов мантийных пород, главным образом океанических базальтов, показывают, что мантия содержит несколько компонентов различным изотопным и химическим составом, которые отражают ее глобальную эволюцию. Эта эволюция характеризуется обеднением верхней мантии рассеянными элементами, возможным пополнением из глубинной менее деплетированной мантии и рециркулированием океанической коры и литосферы, но только небольшого количества континентального материала» (Буйкин А. И., 2005).
Добавим: и благородные газы, которые играют большую роль, в процессе образования минерального сырья.
«Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.
 К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от углерода 12С до серы 32S. Во всех видах радиоактивности, кроме γ‑распада, изменяется состав ядра – число понов Z , массовое число А или и то и другое.
Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах» (Климов А. Н.).
(На уровне 410 км - 2000о К; на 670 км - 2200о К; на границе мантия - ядро 2900 км. - 3000о К).
«Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом энергии, поэтому она представляет особый интерес для управляемого термоядерного синтеза» (Климов А.Н.).
Радиоактивный распад элементов в коре, является источником гелия, а также аргон-40, образующегося в результате распада слаборадиоактивного природного изотопа калий-40.
«… радиогенная мощность распадов тяжелых элементов, составляет около 16 ТВт, что составляет примерно половину от общей измеренной скорости рассеивания тепла Землёй» С. Казарян,  2019).
«Тепловая энергия у границы ядро-мантия составляет 6 ТВт, из которой 1 ТВт еобразуется в гидромагнитную энергию ядра» С.В. Старченко, 2009).
«Давление: в интервале глубин 0-1250 км изменяется в пределах 0-50 Гпа; далее до границы мантия-ядро возрастает до 140 Гпа; на границе внешнее ядро-внутреннее ядро (5200 км) достигает 325 Гпа; на глубине — 5500 км — 350 Гпа, продолжая расти к центру Земли.
Изменение температуры:
На уровне 410 км - 2000о К; на 670 км - 2200о К; на границе мантия - ядро 2900 км. - 3000о К; на границе внешнего и внутреннего ядра - 5300о К, в центре Земли - 6000о К.
То-есть, в подошве верхней мантии (670 км) температура в 1,4 раза ниже, чем на границе мантия - ядро - 2900 км., а давление меньше в 4,5 раза» (Ю.М. Пущаровский).
Пары нефти мигрируют в сторону наименьшего давления, - поврность земной коры, зоны разломов и узлы их пересечения.
Современные сейсмические данные фиксируют наличие в земной коре зон сейсмической прозрачности — «зоны отсутствия или существенного ослабления отражающих и преломляющих границ», В таких зонах сейсмические волны перемещаются с наименьшей потерей энергии. Их верхние части не доходят до поверхности и верхние окончания могут играть роль волновых экранов, где будет происходить поглощение и трансформация (не обязательно тепловая) волновой энергии. Если изотропные физические среды прозрачны для сейсмических волн, то на границе разных физических сред происходит не только преломление, но и поглощение (точнее трансформация) части несущей ими энергии. На границе с гидросферой значительная часть сейсмической энергии трансформируется в механическую энергию разрушительной силы. Возникают электрические грозовые разряды и другие сопровождающие явления. Все это широко используется в технике, в том числе и бытовой (микроволновые печи, лазерные указатели и т.д.). Возможно, с волновой передачей энергии связаны некоторые «безкорневые» интрузивные тела, отсутствие батолитов, региональные процессы гранитизации и многие другие геологические явления. Все это требует самостоятельного детального изучения с позиций механизмов волновой передачи энергии.
Как показало моделирование Гарат И.А. 2001, «энергия упругой волны, генерируемой локальным генератором, увеличивает проницаемость ослабленных зон и нарушений на два порядка, при этом пористость возрастает в пять раз» [5].
Летучая компонента (древней 3,6 млр. лет) нижней мантии представляет собой набор элементов, для мантийных базальтовых выплавок по А.Ф. Грачеву - это гелий, водород, углекислый газ и метан. Очаговый резервуар - резервуар в котором накапливаются флюиды и газы, обогащаются гелием, водородом, метаном, радоном, сероводородом. Над очагом в атмосфере фиксируется поток ионов.
В магму и оболочку D11 постепенно попадают атомы всей таблицы Менделеева, которые затем вступают в химические реакции над поверхностью ядра, - оболочка D11, образуя сложные химические элементы, - синтез минерального сырья.
«В этой зоне идёт своеобразное разделение атомов веществ по их весу вследствие свойства самой водородной плазмы, сжатой огромным давлением, которая имеет огромную плотность, вследствие центробежной силы вращения ядра, и вследствие центростремительной силы земного притяжения.
В результате сложения всех этих сил наиболее тяжёлые металлы тонут в плазме ядра и попадают в его центр для дальнейшего поддержания непрерывного процесса ядерного деления в центре ядра, а более лёгкие элементы стремиться или покинуть ядро, или осесть на его внутренней части - твёрдой оболочке ядра.
 В результате в магму постепенно попадают атомы всей таблицы Менделеева, которые затем вступают в химические реакции над поверхностью ядра, образуя сложные химические элементы» (Кочевник).
Давление: в интервале глубин 0-1250 км изменяется в пределах 0-50 Гпа; далее до границы мантия-ядро возрастает до 140 Гпа; на границе внешнее ядро-внутреннее ядро (5200 км) достигает 325 Гпа; на глубине — 5500 км — 350 Гпа, продолжая расти к центру Земли.
Температура играет важную роль и в реакциях, приводящих к образованию других соединений, таких как этилен (C2H4) и этанол (C2H6O). Так, этилен может образовываться при температуре выше 1000°C, а этанол — при температуре около 300-400°C.
Источником тепла для реакции образования водородного соединения с углеродом могут служить различные источники, включая солнечную энергию, тепло от реакции других химических веществ, электрическую энергию и т.д. Таким образом, выбор оптимальной температуры для процесса образования водородного соединения с углеродом зависит от конкретной реакции и источника тепла.
В.А. Магницкий, 1964, показал, что «локальные расплавленные очаги поднимаются вверх путем зонного плавления по направлению теплового потока. Такой процесс происходит при условии однородного состава расплава». Но если состав расплава неоднороден по вертикали, если расплав у подошвы очага обогащен тяжелыми компонентами, то конвекция не возникает даже при большом градиенте температур (В.Н. Жарков 1964). Градиент температур может превысить градиент температуры плавления, тогда расплав будет мигрировать путем зонного плавления уже не вверх, а вниз, то-есть, навстречу тепловому потоку. Такой же эффект возникает и при не полном, частичном плавлении толщи, когда твердый «каркас» - тектонические нарушения образующие блоки, препятствует перемешиванию частично расплавленной магмы. Появляются исследования, подтверждающие вывод о том, что «...обычно допускаемое в геофизических моделях реологии мантии предположение о наличии ньютоновской вязкости является, возможно, ошибочным» (Грин 1979). Расплав зоны D11 (подошва нижней мантии), при наличии тяжелых компонентов, должен мигрировать путем зонного плавления навстречу тепловому потоку, исходящему от ядра, где температура превышает градиент плавления вещества (53000 К - 6000о К). Кровля нижней мантии располагается на глубине 2200 км., граница мантия - ядро 2900 км. При наличии тяжелых компонентов, путем зонного плавления, в сторону ядра будет миграция железа и др. вещества.
Несмотря на то, что нефть залегает в различных геологических условиях, элементный состав её колеблется в узких пределах, что указывает на едины мантийный источник ее образования. Этот факт указывает на единый источник энергии, - стационарный энергетический центр  первого рода (СЭЦ), который ответстсвенен за синтез минерального сырья. Из области ядра, исходит волна энергии, под воздействием которой вещество и его структура, подвергается преобразованию на атомарном уровне.
Закономерно-стабильное соотношение углерода и водорода (С/Н) на всех месторождениях нефти и газа мира, есть надежный показатель мантийного происхождения нефти и газа. 
Состав вещества мантии, - углистые хондриты.
Нефть (пары нефти), -  синтез происходил в условиях мантии системы Земли, имеет стабильное среднее соотношение:  C/Н = 6.47, n = более 50.
В земной коре пары нефти переходят в жидкую фазу, при низких значениях (ПТ).
Закономерно-стабильное отношение углерода и водорода (С/Н) на всех месторождениях нефти и газа мира, есть надежный показатель мантийного происхождения нефти и газа. 
Состав вещества мантии, - углистые хондриты.
Волновой механизм концентрации минерального сырья в блоках земной коры:
1. Автоколебательная система Земли и генетически с ней связанная иерархия автоколебательных систем второго рода (структурные элементы), определяют существование единого механизма, под воздействием которого происходит концентрация всех типов минерального сырья (фактор - благоприятные РТ условия).
2. Минеральное сырье (любого типа), приурочено к интенсивно дислоцированным толщам — зонам сжатия (рассланцевания), а в их пределах — к локальным областям растяжения (трещинно-брекчиевым структурам). При этом многократная смена условий сжатия условиями растяжения, способна приводить к высокой концентрации минерального сырья.
Механизм работает под воздействием автоколебательной системы Земли.
Временной разрыв между магматизмом и постмагматическим рудообразованием, указывает на то, что система Земли, изначально была структурирована волной энергии.
С.П. Максимов, 1977, показал связь тектонических циклов и процессом накопления нефти и газа - тектоническая цикличность оказывает влияние на миграцию УВ. Тектоническая обстановка является фактором контролирующим пути направления и скорость миграции УВ.
«Синергетика объясняет процесс самоорганизации в сложных системах следующим образом: Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции. Самоорганизация неразрывно связана с волновыми процессами. В любых открытых, диссипативных и нелинейных системах неизбежно возникают автоколебательные процессы, поддерживаемые внешними источниками энергии, в результате которых протекает самоорганизация» (И.Р. Пригожин).
Процесс формирования месторождений минерального сырья, - антиэнтропийный. Система формирования минерального сырья— открытая, благодаря наличию тектонических нарушений в земной коре. Таким образом, главным фактором формирования месторождений являются, - тектонические нарушения. То-есть, тектонические нарушения контролируют месторождения минерального сырья. Процессы синтеза минерального сырья, не могут протекать самопроизвольно, без дополнительного притока энергии извне. Такие системы являются типичными открытыми диссипативными системами. Процесс синтеза минерального сырья, - антиэнтропийный, так-как он происходит в более крупной диссипативной системе, дающей ему необходимую энергию. Поступление дополнительных энергетических ресурсов, необходимых для развития таких систем, может осуществляться за счет волновой передачи энергии от внешних, по отношению к данной системе источников энергии. Все ведущие энергетические центры находятся в мантии.
Пределы мантии, - область синтеза минерального сырья, область земной коры является, Благородные газы генетически связаны с торием и ураном. «В 1977 г. установлено, что изотопные аномалии по Нe и Ne коррелируют с изотопными аномалиями по Аг, Кг и Хе» (Ю.Э. Шуколюков, РАН). Минеральное сырье генетически связано с волной энергии распада тория, урана, кинетической энергией благородных газов и с тепловой энергией зоны: ядро-мантия. Волна энергии способствует дифференциации вещества. Процессы происходящие в системе Земли, связаны генетически волной энергии. Энергия преобразования системы Земли волной энергии и синтез минерального сырья, происходит, под воздействием тепловой энергии более 22 Твт. Гелий-3 обладает большим энергетическим потенциалом.«Корреляция гелия с углями - обратная» (Лебедев), а нефти — прямая.
3
Концепция синтеза минерального сырыья
В.Н. Устьянцев.
«От эмпирических фактов к их обобщению и далее к научному объяснению - плодотворно работает в своем единстве. Все попытки ускорить процесс, за счет исключения сложной и трудоемкой стадии формирования эмпирических обобщений, чреваты искажением общего процесса и созданием иллюзии знания» (В.И. Вернадский, 1920).
 Обнаружение сложных углеводородов на других планетах позволяет в ином ракурсе посмотреть на проблему происхождения нефти. Обилию углеводородов на небесных телах удивляться не приходится: и водород и углерод относятся к числу самых распространенных элементов Вселенной. И действительно, углеводороды, эти непосредственные слагаемые нефти, обнаружили не только на планетах, но и в кометных хвостах, и в веществе метеоритов, в атмосферах холодных звезд, и просто в межзвездном пространстве.
Еще в начале 20-х годов прошлого столетия В.И. Вернадский писал, «о необходимости создания «науки будущего», науки — изучающей «энергетику нашей планеты.
В.И. Попов (1938) выделил 13 градаций волновых пульсаций от крупных до сейсмических волн и подчеркнул, что «в развитии крупных и длительных волновых колебаний интегрируются по правилам своеобразного «естественного отбора» бесконечные ряды соподчинённых, более мелких и более частых, колебаний, в которых непрерывно содрогается тело нашей планеты». Из всех известных природных явлений системные свойства волны энергии способны структурировать пространство системы Земли с проявлением закономерностей размещения месторождений в блоках земной коры. Месторождения располагаются в блоках, подчиняясь определенному закону, то есть, проявлена комплементарность системным свойствам волны энергии. Проявлена, как показано в работе дискретность, периодичность размещения месторождений минерального сырья. Вещество мигрируя из одной формации в другую, подвергается преобразованию на атомарном уровне, приобретая новые качества и свойства. Физико-химические деформации генетически связаны с взаимодействующими полями напряжений, возникновение которых связано с силовым полем гравитации и центробежными силами вращающейся системы.
Ведущим фактором рудогенеза, является фактор энергетический.
Небулярное облака.
«Химический состав межзвездного газа оказался близок составу атмосфер Солнца и звезд. В нем преобладают атомы водорода (Н) и гелия (Не), в качестве примесей – кремний (Si), магний (Мg), железо (Fе), алюминий (Аl), кислород (О), углерод (С), азот (N) и некоторые простые их соединения. Имеются в ничтожном количестве (в концентрации порядка 10-7) и молекулы СН, СН+, СN, Н2. Плюс означает ионизованные молекулы. К настоящему времени известно уже около 60 разнообразных молекул в составе межзвездного газа. Все атомы и ионы среды находятся в невозбужденном состоянии. Это значит, что вследствие чрезвычайно высокого разрежения их взаимные столкновения практически исключены и все атомы, ионы и молекулы будут находиться на невозбужденном (основном) энергетическом уровне. На этом уровне они могут только поглощать излучение на определенных резонансных частотах. Вот по этим резонансным линиям поглощения в спектре и была получена информация о химическом составе межзвездной среды. Неоценимую роль в этих исследованиях сыграли внеатмосферные наблюдения со спутников и межпланетных станций. Дело в том, что земная атмосфера поглощает все внеземное излучение с длиной волны короче 2900 А, соответствующей далекой ультрафиолетовой области спектра.
Кроме газа в межзвездной среде наблюдаются и мельчайшие частички (размером меньше микрона) межзвездной пыли. Она фиксируется в красной области спектра, так как синие и фиолетовые лучи пылинками поглощаются. Покраснение удаленных объектов служит указанием на наличие между ними и наблюдателем космической пыли.
В состав пылинок входят металлы, силикаты, графит, льдинки застывшего газа
Конская Голова.
Астрономы из Франции, Испании и Германии обнаружили в межзвёздном пространстве нашей галактики пропинилидин (C3H+).  Этот углеводород является "братом" природного газа и нефтепродуктов, встречающихся на Земле. Как оказалось, значительные его запасы хранит Конская Голова – туманность в созвездии Ориона. Исследователи изучали спектры излучения туманности при помощи телескопа Института радиоастрономии (IRAM) в миллиметровом диапазоне длин волн и обнаружили характерные линии молекул, содержащих радикал C3H+. Астрономы также выявили в Конской Голове 30 других молекул. Учёных удивило, что туманность, которая давно известна как большая межзвёздная лаборатория, порождающая всё новые химические вещества, обладает значительными запасами углеводородов. "В туманности содержится в 200 раз больше углеводородов, чем воды на Земле!" — рассказывает один из авторов работы Вивиана Гусман (Viviana Guzman).
Отметим, что пропинилидин находили и ранее, но не в нашей галактике. Принадлежность его к семье углеводородов, являющихся основным источником энергии на нашей планете, делает Конскую Голову активным космическим "нефтеперерабатывающим заводом". Туманность находится в 1300 световых годах от нас в созвездии Ориона и получила своё название за характерные очертания. В дальнейшем учёные хотели бы разобраться в процессах производства пропинилидина в недрах этого необычного на вид космического образования. Подробности об уже проделанной работе можно узнать в статье в журнале Astronomy & Astrophysics.
- Нагрев превратил искусственную межзвездную органику в воду с нефтью. Это говорит о том, что почти все запасы воды на Земле могли образоваться из органического вещества © Валерий Шарифулин/ТАСС/.
Новости Яндекс.Дзен.
«ТАСС, 17 июля. Значительная часть запасов воды на Земле могла появиться не из комет или астероидов, а в результате разложения сложных органических молекул в первые эпохи существования планеты. К такому выводу пришли японские планетологи, которые при нагреве в лаборатории образцов искусственного аналога органики из межзвездных газопылевых облаков получили воду и нефть. Описание их исследования опубликовал научный журнал Scientific Reports».
21:00 18.03.2021
В космосе найдены сложные «органические» соединения на основе углерода. Полициклические ароматические углеводороды в Молекулярном облаке Тельца. 
 -Комета Чурюмова – Герасименко.
6:006.07.2015. На комете 67Р (Чурюмва – Герасименко), богата «органическими» соединениями. Однако ни орбитальноый аппарат Rosetta, ни зонд Philae не были оборудованы приборами, позволяющими искать следы жизни.
Выяснили, что: средний состав найденных молекул можно описать формулой C1H1,56O0,134N0,046S0,017, что идентично растворимому «органическому» веществу из хондритных метеоритов и включает в себя множество цепочечных, циклических и ароматических углеводородов в примерном соотношении 6:3:1.
Некоторые молекулы были впервые достоверно обнаружены в коме комет — это нонан (C9H20), нафталин (C10H8), бензиламин (C7H9N), бензойная кислота (C7H6O2), этилен (C2H4) и пропен (C3H6).
За два года работы вблизи кометы «Розетта» нашла на ней ксенон, иней, прекусоры сахаров, высокомолекулярные органические вещества, не обычные скалы, увидела смену окраски ядра и в комемете, а также впервые в истории высадила на комету зонд «Филы» (Александр Войтюк). Космический аппарат «Rosetta» впервые однозначно обнаружил твердое «органическое» вещество в виде сложных углеродсодержащих молекул.
Солнечная система. Пояс Копера. Главный пояс располагается между Марсом и Юпитером. Состав. Всего в поясе насчитывается примерно 200 астероидов, чей диаметр (или наибольший линейный размер) превышает 100 км. Ещё 1000 объектов имеют размер более 15 км. Средняя звездная величина астероидов равна 16. Только один астероид, носящий имя Веста, можно увидеть с земли невооруженным взглядом. Все астероиды можно разделить на несколько больших групп, или спектральных классов. Крупнейшими из них являются: класс С – сюда входят темные астероиды, состоящие из углерода». Источник: https://sunplanets.info/solnechnaya-sistema/glavnyj-poyas-asteroidov-raspolozhenie-sostav-krupnejshie-obekty-i-foto
«Титан — спутник Сатурна, отличающийся крупными размерами, наличием плотной атмосферы и углеводородных озёр.
Титан является единственным известным за пределами Земли объектом Солнечной системы, на поверхности которого присутствует жидкость (реки, озёра, моря).
Эта жидкость представляет собой смесь жидких углеводородов, главным образом, жидкого этана (6÷79%), жидкого метана (5÷10%), жидкого пропана (7÷8%), жидкого бутилена (1%), а также жидкого аргона, азота, угарного газа и водород (менее 1%).
В этой жидкости растворены твёрдые вещества (в молярных долях: 
- циановодород — 2÷3% ,
- бутан — 1%, ацетилен — 1%,
- бензол, - метилцианид и углекислый газ — менее 1%). 
Спутник состоит из каменистого ядра радиусом 1700 км, содержащего 55% общей массы спутника, и жидкой оболочки из гидратов аммиака и метана, над которой располагается ледяная кора. Имеет слабое магнитное поле и атмосферу, состоящую преимущественно из азота» (вкипедия)..
«Новейшие научные данные утверждают, что в центре Земли находится твердый металлический шар, нечто вроде планеты внутри планеты, существование которого делает возможным жизнь на поверхности в том виде, в каком мы ее знаем (именно благодаря ему у Земли есть магнитосфера). Как внутреннее ядро возникло и развивалось — науке неизвестно, но группе геофизиков из США удалось с помощью сейсмических волн установить, что оно представляет из себя не гомогенную массу, как считалось ранее, а мозаику из различных материалов.
Анализ арктической породы указал на протечку ядра Земли — из него вытекает гелий-3
TODO: Георгий Голованов 23 октября 2023 г.»
Солнце, находятся в пространстве большей системе, - в галактической системе Млечный Путь. Данные объекты космоса с момента их формирования, являются стационарными энергетическими центрами — СЭЦ развивающимися в автоколебательном режиме. Режим обеспечивается энергией излучаемой объектами пространства космоса.
Солнце обладает мощными гравитационным и магнитным полями, которые повлияли на скорость осевого вращения, и дифференциацию вещества планет Земной группы.
В составе больших планет — Юпитера, Сатурна, Урана и Нептуна — преобладают водород, гелий и неон, вода — на четвертом месте, а далее — метан, аммиак, сероводород, окислы кремния и марганца, железо и никель. Тяжелых элементов практически нет.
У планет земной группы энергетический ресурс тяжелых элементов практически не исчерпан и они будут способствовать процессу образования минерального сырья.
В Солнечной планетарной системе отмечается закономерность: с удалением от Солнца, уменьшается количество тяжелых элементов, а количество легких элементов (водород, гелий, углеводород, вода и др.), увеличивается.
С удалением от Солнца,  плотность планет уменьшается, что говорит о том, что УВ и нефть образовались в результате распада тяжелых элементов/

Анализ арктической породы указал на протечку ядра Земли — из него вытекает гелий-3
TODO: Георгий Голованов 23 октября 2023 г.
«Это четкое указание на то, что в глубокой мантии Земли есть небулярный неон. Учитывая, что он является маркером для других газов, необходимые для жизни вещества — водород, вода, углекислый газ и азот — накапливались одновременно», - прокомментировал исследование его участник Кертис Уильямс».
«Есть среди химических элементов группа, у которой количество протонов, нейтронов и электронов увеличивается пропорционально. Это группа благородных газов: гелий, неон, аргон, криптон, ксенон, радон» (Феликс Горбацевич).
Криптон изначально не присутствует ни в одном организме и, следовательно, не является частью биологии любого организма.
«В 1977 г. установлено, что изотопные аномалии по Нe и Ne коррелируют с изотопными аномалиями по Аг, Кг и Хе» (Ю.Э. Шуколюков, РАН).
4
Нефтегазоносные области склонов платформ и региональных моноклиналей выявлены на северо-восточном и юго-восточном склонах Восточно-Европейской платформы. В Тимано-Печорском НГБ к ним относится, в частности, Малоземельско-Колгуевская моноклиналь на северо-западе Печорской плиты с рядом перспективных зон нефтегазонакопления антиклинального типа.
На юго-восточном склоне Восточно-Европейской платформы в пределах регионального погружения палеозойских отложений выделяется несколько антиклинальных зон и валоподобных геоструктур, простирание которых аналогично простиранию сопряженного с платформенным моноклинальным бортом Предуральского краевого прогиба. С отдельными локальными поднятиями этих зон связаны нефтяные и газоконденсатные залежи: Благовещенская, Загорская, Тавтимановская и другие.
Близкие условия образования нефтегазоносных областей на склонах древних и молодых платформ отмечаются на северо-восточном склоне Северо-Американской добайкальской платформы, эпипалеозойской платформы северного обрамления Бразильского щита, восточном склоне древней Аравийской платформы и в некоторых других регионах.
Нефтегазоносные области складчатых систем геосинклиналей. В пределах горноскладчатых систем выделяются или прогнозируются нефтегазоносные области, приуроченные к антиклинориям и синклинориям, к мегантиклиналям и центральным геоантиклиналям, мегасинклиналям и межгорным впадинам, срединным массивам, наложенным и поперечным прогибам.
Нефтегазоносные области антиклинориев и синклинориев, в том числе перспективные, выделяются на Северо-Западном Кавказе в пределах Западно-Кавказского НГБ (Ф.К. Байдов, А.И. Дьяконов, 1985). В качестве перспективных нефтегазоносных областей здесь рассматриваются Собербашско-Гунайский и Новороссийско-Лазаревский синклинорий и расположенный между ними Гойтхский антиклинорий (А.Н. Шарданов, А.И. Дьяконов, 1965). Центральная Гойтхская геоантиклиналь последнего благодаря значительным размерам и ряду крупных осложняющих ее антиклиналей может быть выделена в виде самостоятельной нефтегазоносной области Западно-Кавказкого нефтегазоносного бассейна.
В погруженных частях отмеченных перспективно нефтегазоносных областей, исходя из принципа дифференциального улавливания УВ, предполагается преимущественная газоносность, а в краевых более поднятых ? нефтегазоносность. Указанное размещение нефтегазоносности в Западно-Кавказском НГБ подтверждается выявлением Дообского и Прасковеевского газовых месторождений в центральной зоне Новороссийско-Лазаревского синклинория (суббассейна) и нефтеконденсатного месторождения Мирная Балка в районе города Хадыженск в поднятой части прибортовой зоны Собербашско-Гунайского синклинория (суббассейна). На западном погружении Центральной Гойтхской геоантиклинали в скв. 1-Куколовской в разрезе меловых и юрских отложений зафиксированы обильные нефтегазоводопроявления.
Большинство геосинклинальных горноскладчатых систем мира включают потенциально перспективные на нефть и газ области, содержащие региональные очаги нефтегазогенерации одноименных нефтегазоносных бассейнов, которые, как и Западно-Кавказский, могут в ближайшем будущем стать реальными объектами поисков месторождений и прироста запасов нефти и газа.
Мало чем отличаются от рассмотренных нефтегазоносные области мегантиклиналей и центральных геоантиклиналей (интрагеоантиклиналей), выделяемые в отдельную группу. Известным аналогом их является отмеченная ранее перспективно нефтегазоносная область Центральной Гойтхской антиклинали. Кроме того, указанные области выявлены в Афгано-Таджикском НГБ: Сурхандарьинская, Вахшская, Кулябская области мегасинклиналей и Байрам-Куггитанской мегантиклинали. Основные месторождения нефти и газа в отложениях юры, мела и палеогена приурочены к узким протяженным антиклиналям, нередко осложнённым диапиризмом и разрывными дислокациями. Региональные очаги генерации УВ в мегасинклиналях, обладая значительным углеводородным и энергетическим потенциалами, обеспечивают образование крупных месторождений нефти и газа по схеме дифференциального улавливания углеводородов различной фазовой характеристики. В Сурхандарьинской мегасинклинали открыты месторождения Уч-Кызыл, Ляль-Микар, Кокайты, Хаудаг и др.; в Вахшской ? Кизыл-Тумшук, Акбаш-Адыр, Кичик-Бель и другие.
К нефтегазоносным областям срединных массивов, наложенных впадин и прогибов относится область Закавказского срединного массива и смежных наложенных впадин, в частности Колхидской, с очагами генерации УВ. За счет реализации углеводородного потенциала последних в брахиантиклиналях, обрамляющих впадины и осложняющих срединный массив в мел-палеогеновых и миоценовых отложениях, образуются нефтегазовые месторождения, наиболее крупным из которых является Самгори в эоценовых вулканогенно-трещинных коллекторах с извлекаемыми запасами 22 млн. т.
Не менее примечательной является расположенная в горноскладчатой системе Эльбурса Копетдага – Загроса нефтегазоносная область Центрально-Иранского срединного массива. Нефтяные и газовые месторождения в палеозойских и мезозойских отложениях расположены в пределах локальных поднятий, слагающих антиклинальные зоны на склонах массива Хангирен (Сарадже, Альборс, Азам и другие).
Нефтегазоносные области могут быть связаны также с наложенными впадинами, образовавшимися на срединном массиве или других положительных структурных элементах горноскладчатых систем. Примером такой НГО является мио-плиоценовый Керченско-Таманский поперечный прогиб, наложенный на складчатые продолжения: восточное ? Крымского антиклинория и западное – мегантиклинория Большого Кавказа (рис. 43). Одновременно с образованием поперечного прогиба в нем сформировался ряд субширотных антиклинальных зон, сложенных криптодиапировыми брахиформными и более крупными поднятиями плиоценового возраста и более древнего (Северо- Таманский вал). Региональный очаг генерации в терригенных осадках миоплиоцена мощностью более 8 км характеризуется значительным газонефтяным потенциалом, подтверждаемым наличием нефтегазовых залежей в миоплиоценовом структурном ярусе, а также получением промышленных притоков газа из мел-палеогеновых отложений. Керченско-Таманская НГО, являясь высокоперспективной, характеризуется преимущественной газоносностью благодаря доминирующему гумусовому типу ОВ в нефтегазоматеринских осадках соответствующего крупного очага генерации.
Осадочные формации наложенных впадин и краевых прогибов, в т.ч. на срединных массивах, слагают брахиформные структуры, которые осложнены разрывами. Примерами таких нефтегазоносных областей являются Паннонская межгорная впадина в системе горноскладчатых сооружений Альп, Карпат и Динарид и мегавпадина Южного Каспия. В пределах первой установлен целый ряд зон и месторождений с размещением залежей по фазовой характеристике, соответствующей принципу дифференциального улавливания УВ (от очага генерации). Во второй многочисленные нефтяные и газовые месторождения в районе Апшеронского и Бакинского архипелагов, подчиняясь тому же принципу размещения, генетически связаны с региональным очагом генерации в пределах Южно-Каспийской впадины и расположены на морских структурах, часто осложненных диапиризмом.

Особую группу нефтегазоносных областей образуют области межгорных внутрискладчатых впадин. Типичными примерами этой группы впадин с четко выраженным дифференциальным улавливанием углеводородов являются в бывшем СССР: Адлерская НГО (в пределах мегантиклинория Большого Кавказа), Апшеронская, Прикуринская, Западно-Туркменская, Ферганская нефтегазоносные области; в Западной Европе – нефтегазоносные области Венской и Трансильванской впадин; в Юго-Восточной Азии – нефтегазоносные области Бирманской впадины, впадин Индонезийского НГБ (Малайзии); в Северной Америке ? нефтегазоносные области межгорных впадин Скалистых гор и Калифорнии; в Южной Америке ? межгорных впадин Западной Венесуэлы, Эквадора, Колумбии и Перу.
На примере Адлерской, Венской, Бирманской впадин, межгорных впадин Индонезии, Калифорнии, Скалистых гор и др. и соответствующих им НГО устанавливается приуроченность к этим впадинам региональных очагов генерации УВ и их сингенетическая нефтегазоносность. Тип углеводородного флюида в зонах нефтегазонакопления и в залежах определяется доминирующим гумусово-сапропелевым составом ОВ и уровнем его катагенетического преобразования (МК3-МК4), а размещение месторождений ? дифференцированно-дискретным характером миграции углеводородов в газовой фазе и дифференциальным улавливанием УВ. Так, при гумусовом и смешанном типе ОВ и средних уровнях катагенетического преобразования – МК4 доминирует газовый, газоконденсатный и газонефтяной типы флюида с размещением нефтегазовых скоплений по схеме дифференциального улавливания УВ в наиболее поднятой части бортов (НГО Бирманской впадины, нефтегазоносные области Восточных Скалистых гор и другие).
При сапропелевом ОВ (Венская впадина, впадины Калифорнии) по той же модели формирования по бортам преобладают нефтяные залежи, а в центральной наиболее погруженной части размещены газовые и газонефтяные скопления; в Адлерской впадине прогнозируется аналогичный характер распространения нефтегазоносности со сменой газовых залежей от центра прогиба к бортам нефтяными.
Нефтегазоносные области рифтогенных систем установлены в горноскладчатых регионах, в частности в пределах эпиплатформенного обрамления западного продолжения эпигеосинклинальных орогенов Северного и Южного Тянь-Шаня, входящих в систему Центрально-Азиатского эпиплатформенного орогенного пояса. К ним же относятся рифтовые области эпиорогенной части запада Северной Америки: Грейт-Велли, Лос-Анджелес, Вентура-Санта-Барбара и др., входящие в систему Береговых хребтов Кордильер. Отмеченные нефтегазоносные области представляют собой относительно узкие протяженные рифтогенные прогибы и грабенообразные впадины, ограниченные глубинными разломами амплитудой более 2,5 км, которыми они отделяются от высокоподнятых горно-складчатых эпиплатформенных орогенных и эпигеосинклинальных блоков.
Рифтогенные впадины, образующие соответствующие НГО, выполнены осадочными эпиконтинентальными толщами мезозойскокайнозойского возраста мощностью до 9-10 км, обладающими высоким нефтегазогенерационным потенциалом (более 1000 грамм автохтонных углеводородов в 1 м3 НГМ породы). В сложном соотношении с отмеченными притяньшаньскими рифтогенными эпиорогенными впадинами и смежными эпиплатформенными горноскладчатыми геоблоками находятся внутрискладчатые межгорные впадины типа Ферганской, представляя «резонансно-тектонические» структуры (Ю.М. Пущаровский, 1981; А.Д. Буш, 1963). Указанные рифтогенные платформенные прогибы типа Ферганской впадины являются крупными потенциально нефтегазоносными областями с зонами нефтегазонакопления, образовавшимися по модели В. Гассоу и В.П. Савченко. Последнее подтверждает, в частности, очень высокий УВ потенциал мезозойскокайнозойских формаций в близких по генезису нефтегазоносных областях эпиорогенной части запада Северной Америки: Лос-Анджелес, Вентура, Санта-Барбара и других, где выявлено более 200 крупных месторождений нефти и газа (Лонг-Бич, Санта-Фе-Спрингс, Уиллингтон, Вентура, Эльвуд, Литл-Спрингс, Мидоуэй-Сансет и др.).
5
Нефтегазоносные области, соответствующие линейным валам, мегавалам и их системам, морфогенетически близки к предыдущему типу НГО сводовых поднятий. Это подтверждается характерными примерами и подкрепляется аналогией соответствующих структурных элементов платформенных областей и режимов развития. В пределах добайкальской Восточно-Европейской платформы ? Колвинский мегавал и соответствующая НГО Тимано-Печорского НГБ; на древней Сибирской платформе ? Непско-Ботуобинская антеклиза – НГО с системой валов, мегавалов, соответствующих крупным зонам нефтегазоконденсатных месторождений в центральной и газоконденсатных ? в краевых частях поднятий Лено-Тунгусской НГП. На эпигерцинской платформе юга бывшего СССР аналогичные зоны нефтегазонакопления размещены в пределах нефтегазоносных областей кряжа Карпинского, Центрально-Устюртской, Бухарской и других зон поднятий.
В северной части Западно-Сибирской эпигерцинской платформы находятся Ямальская, Гыданская, Надым-Пурская и другие газонефтеносные области с Хорасавейско-Бованенковской, Северо-Ямальской, Ямбургской, Уренгойской и другими крупнейшими зонами газоконденсатонакопления с нефтяными оторочками, приуроченными к соответствующим мегавалам, обрамляющим региональные очаги генерации углеводородов с доминирующим в них гумусовым ОВ в нижнемеловых отложениях. На древней Африканской платформе в системе мегавалов Амгит-Хасси-Мессауд, Хасси-Р` Мель, Джебель, Аллан-Тильренти и соответствующих им НГО размещены крупные зоны нефте- и газоконденсатонакопления, сформированные по принципу дифференциального улавливания УВ. Указанные валообразные поднятия и мегавалы в основном унаследованного развития, способствовавшего дифференциальному улавливанию УВ или дифференцированно-струйному заполнению ловушек указанных зон.

К унаследованно-конседиментационным относятся также отмеченные выше кряж Карпинского раннетриасового заложения, Центрально-Устюртская и Бухарская зоны поднятий того же возраста, Уренгойский, Северо-Ямальский, Ямбургский и другие мегавалы дотриасового образования. Непско-Ботуобинская антеклиза раннекембрийского заложения и аналогичного типа развития унаследованные мегавалы Амгит-Хасси-Мессауд и другие. Близка к инверсионной активно проявлявшая себя додевонская геоструктура Колвинского мегавала, окончательно сформировавшаяся как инверсионная к раннему триасу (с конседиментационно-унаследованными в позднем силуре Усинским, Возейским и Ярейюским валами).
Высокая динамотектоническая активность перечисленных крупнейших блоковых поднятий и соответствующих НГО способствовала формированию и размещению в них зон нефтегазонакопления преимущественно по схеме дифференциального улавливания углеводородов различной фазовой характеристики при доминирующем газовом потенциале региональных очагов генерации углеводородов по схеме дискретно-струйного образования месторождений. При этом в приподнятых ловушках располагались газовые и газоконденсатнонефтяные скопления. В частности, такой характер имело образование уникальных газовых месторождений на севере Западной Сибири, в Средней Азии, группы газовых гигантов Панхэндл-Хьюготон в США при осуществлении в качестве оснований классической модели дифференциального распределения нефти и газа.
Наглядным примером применимости дифференциальной схемы формирования месторождений и зон нефтегазонакопления является распределение залежей в пределах Колвинской нефтегазоносной области Тимано-Печорского НГБ. Как указывалось ранее, мощный миграционный поток УВ, направленный из регионального Южнобаренцевоморско-Печорского очага генерации, способствовал реализации дифференциальной схемы размещения месторождений.
Нефтегазоносные области линейных внутриплатформенных впадин, авлакогенов и рифтов наиболее широко распространены в регионах мира, представляя обширные области погружения складчатого основания с активными поднятыми блоками фундамента в пределах платформенных плит. Примером подобных крупнейших областей могут служить:
    • на Восточно-Европейской платформе ? Печоро-Колвинская, Ижма-Печорская, Хорейверская в Тимано-Печорском НГБ;
    • на Скифско-Туранской эпигерцинской платформе ? Восточно-Кубанская, Чернолесская, Южно-Мангышлакская;
    • на Западно-Сибирской эпигерцинской платформе ? Ханты-Мансийская, Надымская, Усть-Енисейская и др. Западно-Сибирского НГБ.
На Западно-Европейской эпипалеозойской платформе к аналогичным мегавпадинам с локально поднятыми блоками относятся Восточно-Германская, Западно-Германская, Североморская в Североморско-Германской нефтегазоносной провинции, Аквитанская и Парижская в соответствующих НГБ и другие. На Китайской древней платформе ? Сычуанская, Таримская, Джунгарская мегавпадины и мегавпадины окраинных морей Западно-Тихоокеанского шельфа, соответствующие одноименным НГБ; на Индийской древней подвижной платформе ? Камбейская, Индская, Восточно-Бенгальская и др.; на Северо-Американской платформе ? Иллинойская, Мичиганская, Делаверская, Додж-Сити в США, Альбертская в Канаде и другие. На Африканской древней платформе ? Конго, Кванза в Анголе, Сиртская в Ливии, Восточно-Алжирская в Алжире; на Аравийской древней платформе ? Басра-Кувейтская и Руб-Эль-Халийская мегавпадины.
Зоны нефтегазонакопления в платформенных впадинах, мегавпадинах и авлакогенах могут формироваться не только по бортам, но и в погруженной части нефтегазосборных площадей, соответствующих очагам генерации УВ. На высокую перспективность их в нефтегазоносном отношении указывал ранее А.А. Бакиров и др. (1987). Справедливость этих выводов была подтверждена выявлением новых крупных месторождений в центральной части внутриплатформенных впадин и авлакогенов в Тимано-Печорском, Западно-Сибирском, Каракумском, Азово-Кубанском, Среднекаспийском и других НГБ. Имеется немало примеров, когда наиболее богатые зоны газонефтенакопления приурочены к ловушкам в погруженных частях мегавпадин, расположенных непосредственно в очагах генерации УВ, например в Иллинойской мегавпадине США.
Таким образом, в нефтегазоносных областях рассматриваемого типа крупные зоны газо- и нефтенакопления образуются не только в прибортовых, но и в центральных частях мегавпадин и авлакогенов, что наблюдается на примере Печоро-Колвинского авлакогена (рис. 39). Многие месторождения его приурочены к прибортовым Шапкина-Юрьяхинскому валу и Колвинскому мегавалу (уникальное Усинское нефтяное месторождение с месторождением легкой нефти в среднем девоне), тогда как крупнейшее Лаявожское газоконденсатнонефтяное месторождение находится в центральной его зоне, в Денисовской впадине. Формирование этих и большинства других залежей и месторождений указанных нефтегазоносных областей хорошо укладывается в схему дифференциального улавливания углеводородов или дискретно-струйного образования скоплений нефти и газа.
Нефтегазоносные области рифтогенных впадин-грабенов представляют разновидность рассмотренных выше областей мегавпадин и авлакогенов. Примерами могут служить в пределах Восточно-Европейской платформы нефтегазоносные области Днепровско-Донецкой рифтогенной впадины авлакогена (рис. 40); Западно-Европейской платформы ? Рейнской рифтовой впадины; Африканской платформы – Суэцкой рифтовой впадины.

Кроме того, типичным примером нефтегазоносных областей данного типа являются рифтовые области с крупными зонами дифференцированного нефтегазонакопления в рифтовых системах континентального шельфа Северного моря в Североморско-Германской нефтегазоносной провинции. К крупнейшим рифтогенным впадинам-грабенам и к зонам сочленения систем субширотного и субмеридионального простираний в пределах Североморского очага генерации с крупными поднятиями связано образование уникальных месторождений нефти в горизонтах пермского, триасово-юрского и особенно верхнемелового возраста: Экофиск, Зап. Экофиск, Жозефина, Фортис, Монтроз, Пойнтер и др. В Южно-Североморском региональном очаге генерации газа в аналогичных структурных условиях формируются и размещаются в соответствии со схемой дифференциального улавливания УВ газовые гиганты в отложениях перми и триаса: Индифэтигейбл, Леман, Гронинген и др. (рис. 41 I; II; III).
В нефтегазоносных рифтогенных областях Днепровско-Донецкой впадины с соответствующими очагами газогенерации, как и в Рейнском грабене, схемы дифференциального улавливания углеводородов и дискретно-струйного заполнения ловушек углеводородами обусловливают образование и размещение зон преимущественно газоконденсатных и газонефтяных месторождений в приразломно-блоковых поднятиях в погруженных частях очагов генерации, нефтяных ? в прибортовых.


Нефтегазоносные бассейны и области краевых и тыльных прогибов широко распространены на континентах, ограничивая платформенные системы и отделяясь шовными зонами от смежных геосинклиналей. Они характеризуются своей спецификой размещения месторождений нефти и газа. В альпийских прогибах нефтяные месторождения, как правило, преобладают над газовыми, в герцинских и более древних, напротив, доминируют газовые и газоконденсатные, что связано с более интенсивным катагенным преобразованием органического вещества в региональных очагах генерации УВ. Примерами могут служить в пределах Восточно-Европейской платформы нефтегазоносные области Предуральского краевого прогиба с палеозойскими, в т.ч. орогенными формациями, а со стороны Западно-Сибирской эпигерцинской платформы ? тыльного прогиба (по отношению к Предуральскому).
В краевых прогибах – обычно суббассейнах эпигерцинских и эпибайкальских платформ, выполненных соответственно мезозойскими и палеозойскими формациями, включая орогенные, – распространены нефтегазоносные области Предкавказского, Предкопетдагского и Предуральского краевых прогибов. Типичным примером аналогичного суббассейна на Европейском севере России является Северо-Предуральский, где размещение месторождений в Верхнепечорской его части (рис. 42) с уникальным Вуктыльским газоконденсатным месторождением обязано огромному преимущественно газовому потенциалу Западно-Уральского очага генерации при дифференцированном струйном формировании и размещении залежей.

На Северо-Американской древней платформе к краевым прогибам приурочены нефтегазоносные области Предаппалачского, Предуачитского и Предкордильерского краевых прогибов. На Индостанской древней платформе ? НГО Бенгальского краевого прогиба, а на Аравийской ? Месопотамского краевого прогиба и других.
Типичными примерами нефтегазоносных областей указанного типа являются области Северо-Предуральского краевого прогиба Тимано-Печорского НГБ и Предаппалачского краевого прогиба в США, а также с мезозойскими структурами ? Месопотамского прогиба. К отмеченным и многим другим нефтегазоносным областям краевых прогибов приурочены региональные очаги генерации с мощным нефтегазовым потенциалом. Условия формирования зон нефтегазонакопления и нефтегазовых месторождений в них в соответствии с принципом дифференциального улавливания УВ указывают на преимущественную газонефтеносность с преобладанием газоносности в погруженной части палеозойских прогибов и нефтегазоносности ? в бортовых. Так, в погруженной части Северо-Предуральского краевого прогиба расположено отмеченное выше уникальное Вуктыльское газоконденсатное месторождение?, а в прибортовой ? Западно-Соплесское газоконденсатнонефтяное (рис. 42).
В нефтегазоносных областях альпийских прогибов (Азово-Кубанского, Среднекаспийского, Месопотамского и других) в погруженной зоне образуются, главным образом, нефтегазовые месторождения, вплоть до уникальных (соответственно Анастасиевско-Троицкое, Правобережное, Киркук), а по бортам преимущественно нефтяные ? Левкинское, Малгобекское, Ага-Джари. Исключение составляют альпийские нефтегазоносные области с региональными очагами генерации газа, например, Восточно-Бенгальская в Восточном Пакистане и частично герцинские (Северо-Предуральская газоносная область в ТП НГБ), где в разрезе осадочного чехла доминирует гумусовое ОВ. В этом случае формирование и размещение газовых и газоконденсатных месторождений осуществляется в основном дискретно-струйным путем.
6
Общие закономерности в формировании и размещении залежей нефти и газа
В настоящее время можно считать доказанным, что образование углеводородов в земной коре связано с формированием осадочных толщ. Отсюда вытекают и важнейшие выводы о закономерностях размещения нефтяных и газовых скоплений в земной коре.
    • 1. Из выявленных в земных недрах ресурсов нефти и газа более 99,9 % приурочено к осадочным образованиям. В разрезе каждой нефтегазоносной провинции содержится один или несколько литолого-стратиграфических комплексов, характеризующихся региональной нефте-газоносностыо и разделенных газонефтенепроницаемыми толщами отложений-покрышек.
    • 2. В земной коре залежи и местоскопления нефти и газа группируются в зоны нефтегазонакопления, совокупность которых в свою очередь образует нефтегазоносные области, объединяемые в крупные нефтегазоносные провинции. В геострукгурном отношении нефтегазоносные области приурочены на платформах к внутриплатформснным и краевым впадинам, сводовым и линейно вытянутым поднятиям и авлакогенам, а в переходных и складчатых регионах - к предгорным и межгорным впадинам, срединным массивам.
    • 3. Изучение условий залегания нефти и газа показывает, что на местоскоплениях нефти и газа могут встречаться одновременно несколько типов залежей.
    • 4. Ареалы региональной нефтегазоносности в отложениях различных стратиграфических подразделений в одних случаях совпадают, а в других - территориально смещены.
    • 5. В размещении скоплений нефти и газа наблюдается зональность: выделяются территории преимущественно нефтеносные, преимущественно газоносные, содержащие и газ, и нефть. Зональность может быть и вертикальной.
Вертикальная и региональная зональность в размещении залежей нефти и газа
Анализ размещения запасов жидких и газообразных углеводородов показывает, что верхние части разреза (до глубины 1,2-1,5 км) содержат преимущественно скопления газа, на глубинах 1,5-3,5 км запасы газа сокращаются и увеличиваются запасы жидких углеводородов. Далее с ростом глубины (более 4-5 км) вновь происходит увеличение запасов газообразных углеводородов и уменьшение запасов нефти. Как правило, в нижней газовой зоне (на глубине более 4-5 км) наряду с газом встречается нефть, растворенная в газе (газоконденсатные залежи).
Наряду с вертикальной зональностью в размещении скоплений нефти и газа наблюдается региональная (горизонтальная) зональность.
ЗАКОНОМЕРНОСТИ…
Закономерности размещения зон нефтегазонакопления, залежей и месторождений нефти и газа
Важнейшими нефтегазогеологическими категориями и крупнейшими территориями размещения нефтегазоносности на земном шаре являются нефтегазоносные пояса, соответствующие геосинклинальным поясам или крупнейшим частям платформ. Соподчиненными им являются нефтегазоносные бассейны, которые могут рассматриваться в ранге нефтегазоносных провинций. Последние относятся как к платформенным, так и геосинклинальным территориям, включающим различные по масштабу положительные и отрицательные структурно-тектонические элементы.
Подробная характеристика нефтегазоносных провинций и соответствующих осадочных нефтегазоносных бассейнов дана в специальных учебниках (Г.Т. Дикенштейн и др., 1979; С.П. Максимов и др., 1982; Н.Ю. Успенская, Н.Н. Таусон, 1972; И.О. Брод и др., 1965 и др.). В настоящем учебнике рассматриваются на основе этого закономерности размещения в пределах них зон нефтегазонакопления, залежей и месторождений. Вместе с тем, учитывая определяющую роль и универсальный характер использования нефтегазоносной области (НГО) в качестве повсеместно применяемой нефтегазогеологической категории как в районировании нефтегазоносных провинций, так и осадочных нефтегазоносных бассейнов, авторы используют в качестве самостоятельной классификационной категории также НГО. Последние осложнены региональными зонами нефтегазонакопления антиклинального, литологического, стратиграфического, рифового и комбинированного типов.
Региональные зоны нефтегазонакопления являются неотъемлемыми частями всех нефтегазоносных бассейнов (И.О. Брод, И.В. Высоцкий, В.Б. Оленин, Б.А. Соколов и др., 1965) и провинций (А.А. Бакиров, С.П. Максимов, Э.А. Бакиров и др., 1967, 1976 и др.). Исходя из рассмотренных выше условий формирования нефтегазовых месторождений, ниже приводятся основные закономерности распространения нефтегазоносных областей, региональных зон нефтегазонакопления, залежей и месторождений.
В пределах бывшего СССР и зарубежных стран крупнейшие и уникальные зоны нефтегазонакопления и месторождения приурочены к нефтегазоносным территориям (НГБ, НГП) с наибольшим нефтегазовым потенциалом, определяемым общим объемом нефтегазопроизводящих свит, максимальной генерацией УВ, величиной положительных структурных элементов и мощностью пород-коллекторов. Как будет показано ниже, эти и другие определяющие показатели формирования промышленной нефтегазоносности являются одновременно важнейшими прогнозными показателями перспективной оценки недр и обоснования главных направлений геологоразведочных работ на нефть и газ. Нефтегазогеологическими элементами нефтегазоносных бассейнов и провинций являются нефтегазоносные области, приуроченные к определенным тектоническим областям, характеризующим специфику концентрации и размещения зон регионального нефтегазонакопления, месторождений и залежей. Ниже приводится классификация нефтегазоносных областей по И.О. Броду, А.А. Бакирову и М.К. Калинко с дополнениями.
Для платформенных территорий в качестве основных нефтегазоносных областей выделяются:
    • сводовые поднятия;
    • мегавалы, системы мегавалов;
    • авлакогены, мегавпадины, системы мегавпадин;
    • рифтогенные впадины-грабены;
    • краевые и тыльные прогибы;
    • склоны платформ и региональные моноклинали.
Для геосинклинальных территорий в качестве основных нефтегазоносных областей выделяются:
    • антиклинории и синклинории;
    • мегантиклинали и центральные геоантиклинали;
    • мегасинклинали и межгорные впадины (депрессии);
    • наложенные впадины, поперечные прогибы и поднятия (ступени);
    • срединные массивы;
    • рифтогенные впадины.
Нефтегазоносные области платформ. Основные запасы нефти (83%) и газа (78%) в мире сосредоточены в платформенных областях. В пределах сводовых поднятий региональные зоны нефтегазонакопления приурочены к мегавалам, валам и крупным брахиплатформенным структурам. Около 20% запасов углеводородов находятся в региональных зонах литологического выклинивания и стратиграфического несогласия, в т.ч. замещения проницаемых горизонтов непроницаемыми, а также в рифовых образованиях этих зон.
Типичными примерами нефтегазоносных областей, приуроченных к сводовым поднятиям, являются (большая часть поднятий – около 70% – имеет унаследованный характер, остальная – инверсионный):
    • в пределах древней Восточно-Европейской платформы: Татарский, Пермско-Башкирский, Средне-Волжский и другие своды и соответствующие НГО;
    • на молодой эпипалеозойской платформе: Ставропольский и Каракумский своды;
    • в пределах Западно-Сибирской платформы: Нижневартовский, Александровский, Сургутский, Уренгойский, Тазовский и др. своды;
    • на древней Северо-Американской платформе: Цинциннатский, Семинол, Бенд, Чоттоква и другие.
Примерами наиболее крупных нефтегазоносных областей сводового типа на молодой Западно-Сибирской платформе являются Нижневартовский и Сургутский своды раннеюрского заложения конседиментационно-унаследованного формирования; наиболее активно они развивались в неокомальбское время и в неогене. В настоящее время размеры Нижневартовского свода составляют 210?140 км, Сургутского ? 270?110 км, их осложняют валы и крупнейшие брахиформные структуры унаследованного типа. К Нижневартовскому своду приурочены крупнейшая по запасам зона нефтенакопления и уникальное Самотлорское нефтяное месторождение сверхгигант (рис. 37), начальные извлекаемые запасы которого составляли 2,1 млрд. т, а в пределах Сургутского сводового поднятия находится группа уникальных нефтяных месторождений, включающих Сургутское, Северо-Фроловское, Мегионское, Фроловское и др. На юго-западе к нему примыкает Салымское куполовидное поднятие, с которым связаны крупные залежи нефти в баженовской свите верхней юры, как и на соседнем Западно-Лемпинском многопластовом месторождении.
По условиям размещения скоплений нефти и газа в пределах большинства сводов фиксируется приуроченность залежей к приподнятой центральной зоне. Такое положение занимает, в частности, Ромашкинское сверхгигантское месторождение нефти и соответствующая зона нефтенакопления на Татарском своде (рис. 38), а также залежи в пределах погребенных сводов: Цинциннатского, Бенд, Семинол, Чоттоква. При ведущей роли струйного фактора (В.П. Савченко, 1954) и сапропелевом ОВ в наиболее поднятых ловушках образуются нефтескопления. При гумусовом или сапропелево-гумусовом ОВ в региональных и локальных очагах генерации с преимущественно газообразным типом УВ на склонах поднятий отмечаются газонефтяные месторождения, а в своде ? газовые. Так, для Ставропольского и Каракумского сводов главные зоны газонакопления с наиболее крупными месторождениями концентрируются в присводовой части, а на склонах ? зоны газонефтеконденсатонакопления.
7
Цель геологоразведочного процесса - открыть местоскопление нефти и газа, количественно и качественно оценить его запасы подго­товить их к разработке. При проведении геологоразведочных работ на отдельных этапах и стадиях применяются различные методы исследо­ваний (геологические, геофизические, геохимические, гидрогеологические, геотермические, аэрокосмические методы, буровые работы) и обра­ботки полученной информации. Процесс поисков и разведки постоян­но меняется по качеству вследствие применения новых методов и повы­шения точности исследований (например, в последнее время расширяют­ся масштабы применения математических методов и ЭВМ, космических съемок и др.).
Геологоразведочные работы на нефть и газ требуют огромных средств, исчисляемых миллиардами рублей ежегодно. Так, на поиски и разведку нефти и газа приходится более 50 % затрат на поиски всех по­лезных ископаемых в стране. Отсюда очевидно важнейшее народнохо­зяйственное значение проблемы всемерного повышения эффективности 'и качества проведения исследований во всех звеньях геологоразведоч­ного процесса.
Последовательность проведения геологоразведочных работ на нефть 'и газ регламентируется Положением об этапах и стадиях геологоразведочных работ на нефть и газ, является обязательным для всех организаций, выполняющих работы, связанные с изучением вопросов нефтегазоносности, поисков и разведки залежей нефти и газа в стране, независимо от их ведомственной принадлежности и подчинения.
Согласно Положению об этапах и стадиях геологоразведочные работы на нефть и газ в зависимости от стоящих перед ними задач и состояния изученности нефтегазоносности недр подразделяются на региональный, поисковый и разведочный этапы с выделением в них стадий. Каждый этап или стадия преследуют определенные цели и пре­дусматривают решение ряда задач. На всех этапах и стадиях геологоразведочного процесса на нефть и газ определяется геолого-экономическая оценка проводимых работ на основе оценки ресурсов и подсчета запасов нефти и газа.
Таблица
Этап
Геологораз-ведоч­ный процесс
Изучаемые объек­ты
Основные задачи
Категория
ресурсов,
запасов





Региональ-ный
Прогноз нефтегазоносности
Осадочные бассей­ны и их части
1. Выявление литолого-стратиграфи­ческих комп­лексов, структурных этажей, ярусов и структурно-фациальных зон, определение характера ос­новных этапов геотектонического развития, тек­тоническое районирование.
2. Выделение нефтегазоперспективных комплек­сов (резервуаров) и зон возможного нефтегазо­накопления, нефтегазогеологическое райониро­вание. 3. Качественная и количественная оценка перспек­тив нефтегазоносности. 4. Выбор основных направлений и первоочеред­ных объектов дальнейших исследований
Качественная оценка Д2 и частично Д1

Оценка зон нефтегазонакопления
Нефтеперспективные зоны и зоны нефтегазонакопления
1. Выявление субрегиональных и зональных структурных соотношений между различными нефтегазоперспективными и литолого-стратиграфи­ческими комплексами, основных закономернос­тей распространения и изменения свойств пород-коллекторов и флюидоупоров, уточнение нефтегазогеологического районирования.
2. Выделение наиболее крупных ловушек.
3. Количественная оценка перспектив нефтегазо­носности.
4. Выбор районов и установление очередности проведения в них поисковых работ
Д1 и частично Д2

Выявление и подготовка объектов
Районы с установленной или возможной нефтегазоносностью
1. Выявление условий залегания и других геолого-геофизических свойств нефтегазоносных и нефтегазо­пер­спективных комплексов.
Д1 и частично Д2,
Поисковый
к поиско­во­му бурению
Подготовка объектов
Поиск месторождений (залежей)
Оценка месторож­дений (залежей)
Выявленные ло­вушки -
Подютовлен-ные ловушки
Открытые месторождения (залежи)
2. Выявление перспективных ловушек. 3. Количественная оценка ресурсов в выявленных ловушках.
4. Выбор объектов и определение очередности их подготовки к поисковому бурению
1. Детализация выявленных перспективных лову­шек, позволяющая прогнозировать пространствен­ное положение предполагаемых залежей.
2. Выбор мест заложения поисковых скважин на подготовленных объектах. 3. Количественная оценка ресурсов на объектах, подготовленных к поисковому бурению.
4. Выбор объектов и определение очередности их ввода в поисковое бурение.
1. Выявление в разрезе нефтегазоносных и нефте­газоперспективных комплексов коллекторов и покрышек и определение их геолого-геофизи­ческих свойств (параметров).
2. Выделение, опробование и испытание нефтегазонасыщенных пластов и горизонтов, получение при­токов нефти и газа и установление свойств флюи­доупоров и фильтрационно-емкостных характе­ристик пластов.
3. Оценка запасов открытых залежей. 4. Выбор объектов для проведения детализационных геофизических и оценочных буровых работ
1. Установление основных характеристик место­рождений (залежей) для определения их промыш­ленной значимости.
2. Подсчет запасов месторождений (залежей).
3.Разделение месторождений (зале­жей) на про­мышленные и непромышленные.
4. Выбор объектов и этажей разведки, определение очередности проведения опытно-промышленной эксплуатации и подготовка их к разработке
С3
С2 и частично С1
С2 и С1

Подготовка месторожде-ний (за­лежей) к разработке
Промышлен-ные месторождения (залежи)
1. Определение, геометризация и оценка достовер­ности значений геолого-промысловых, фильтрационных и подсчетных параметров по скважинам и объектам для подсчета запасов и составление технологической схемы разработки месторожде­ния (для нефти) и проекта опытно-промышленной разработки месторождения (для газа). 2. Подсчет запасов и определение коэффициента извлечения.
3. Доизучение залежей и месторождений в процес­се разработки
С1 и частично С2
Различают ресурсы и запасы нефти и газа. Факт установле­ния продуктивности отложений испытанием скважин служит границей, разделяющей запасы и ресурсы.
Запасы нефти и газа по степени изученности подразделяются на раз­веданные - категории А, В и С1 и предварительно оцененные - катего­рия С3 . Ресурсы нефти и газа по степени изученности и обоснованности подразделяются на перспективные - категория С3 и прогнозные - категории Д1 и Д2.
Запасы залежей и перспективные ресурсы нефти и газа подсчиты­ваются и учитываются в государственном балансе запасов полезных ис­копаемых по результатам геологоразведочных работ и разработки месторождений.
Под прогнозной оценкой ресурсов нефти и газа понимается коли­чественная оценка перспектив нефтегазоносности литолого-стратиграфических комплексов или отдельных горизонтов, которая проводится на основе анализа общих геологических критериев нефтегазоносности, т.е. качественной оценки перспектив. Оценка прогнозных ресурсов нефти и газа осуществляется для крупных территорий, небольших их частей и локальных площадей. Данные о прогнозных ресурсах нефти и газа используются при планировании поисковых и разведочных работ.
Прогнозные ресурсы нефти и газа в литолого-стратиграфических комплексах крупного тектонического элемента с доказанной промыш­ленностью нефтегазоносностью относят к категории Д1. В категорию Д2 выделяют прогнозные ресурсы нефти и газа в литолого-стратиграфи­ческих комплексах крупных региональных структур с еще не доказан­ной промышленной нефтегазоносностью. Нефтегазоносность этих комп­лексов установлена на сходных по геологическому строению крупных тектонических структурах.
Количественная оценка прогнозных ресурсов нефти и газа катего­рии Д1 определяется на основе результатов региональных работ и по аналогии с разведанными залежами в тех же комплексах в пределах оце­ниваемой крупной региональной структуры, а категории Д2 - по предпо­ложительно взятым параметрам на основе общих геологических предс­тавлений и по аналогии с крупными региональными структурами, в ко­торых залежи уже разведаны. Для оценки прогнозных ресурсов приме­няются методы сравнительного геологического анализа, объемно-генети­ческий и др.
Ресурсы нефти и газа подготовленных к глубокому бурению пло­щадей подсчитываются по категории С3 , если эти площади находятся в пределах нефтегазоносного района (в одной структурно-фациальной зоне с выявленными залежами) и оконтурены достаточно надежными для данного района методами. В эту же категорию выделяют ресурсы не вскрытых бурением пластов разведанных местоскоплений, если продуктивность их установлена на других местоскоплениях района. Оценка ресурсов по категории С3 используется для планирования при­роста запасов категорий С1 и С2 .
К категории С2 относятся запасы залежи (ее части), наличие кото­рых в неразведанных частях залежи, примыкающих к участкам с запа­сами более высоких категорий, в промежуточных и вышезалегающих неопробованных пластах разведанных местоскоплений обосновано данными геологических и геофизических исследований.
Результаты подсчета запасов по категории С2 используются для опре­деления перспектив местоскопления, частично для проектирования его разработки и планирования геологоразведочных работ.
Запасы залежи (ее части), установленные на основании полученных в скважинах промышленных притоков нефти или газа (часть скважин опробована испытателем пластов) и положительных результатов геоло­гических и геофизических исследований в неопробованных скважинах, относят к категории С1 . Запасы категории С1 подсчитывают по резуль­татам геологоразведочных работ и эксплуатационного бурения. Они могут быть подсчитаны для участка около первой поисковой скважины с промышленным притоком из выявленной ею залежи (в радиусе, рав­ном удвоенному расстоянию между добывающими скважинами сеток, применяемых на сходных по строению залежах района), для разведанной части залежи и полностью разведанной залежи. По результатам подсчета запасов категории С1 составляются технологические схемы разработки (для нефтяных залежей) и проекты опытно-промышленной эксплуата­ции (для газовых).
Перспективные ресурсы, а также запасы категорий С2 и С1 подсчи­тываются объемным методом, который учитывает площадь нефтегазоносности предполагаемого или выявленного продуктивного горизонта, его мощность, пористость слагающих его пород, степень насыщенности его углеводородами. Объем УВ, определенный для пластовых условий, пересчитывается для нормальных условий.
По мере разбуривания площади количественная оценка нефтегазоносности будет даваться по более высоким категориям: сначала по ка­тегории С1 , а затем (уже в процессе разработки) — по категориям В и А.
Важно отметить, что по одной и той же выявленной залежи произво­дят подсчет запасов по различным категориям, так как различные ее части (блоки) в процессе разведки могут быть освещены бурением в различной степени, т.е. изучены неодинаково. Степень изученности залежи учитывается не только в классификации запасов, она позволяет также решить вопрос о передаче обнаруженного скопления (залежи, местоскопления) в разработку.
Таким образом, в основе геолого-экономической оценки геолого­разведочного процесса на различных его стадиях лежит степень геоло­гической изученности недр региона, отдельной площади или выявленной залежи, выражающаяся в конечном счете количественной оценкой нефтегазоносности - подсчетом запасов, оценкой ресурсов различных категорий.
8
ЗАКОНОМЕРНОСТИ РАЗМЕЩЕНИЯ ЗАЛЕЖЕЙ НЕФТИ И ГАЗА
В ЗЕМНОЙ КОРЕ
Классификация нефтегазоносных территорий как основа нефтегазогеологического районирования
На земном шаре известно примерно 35 000 местоскоплений нефти, газа и битумов, открытых на Всех континентах Земли (кроме Антар­ктиды) и во многих омывающих их морях и океанах. Однако выявлен­ные залежи УВ в пределах нефтегазоносных территорий распределены крайне неравномерно как по площади, так и по разрезу осадочных отложений, что является главнейшей геологической особенностью раз­мещения нефти и газа в недрах. Например, значительные концентрации ресурсов нефти и газа установлены на Ближнем и Среднем Востоке (Саудовская Аравия, Ирак, Иран, Кувейт и др.), в Северной Африке (Ливия, Алжир), в Мексиканском заливе, Северном море, на террито­рии СССР (Западная Сибирь, Урало-Поволжье) и в других регионах. В то же время известно громадное количество мелких и средних местоскоплений.
Как показывают многочисленные -исследования, размещение ре­сурсов нефти и газа, типы локальных и региональных скоплений на­ходятся в тесной связи с геологической историей развития определенных типов геоструктурных элементов земной коры (платформы, геосин­клинали и т.д.) и с особенностями строения и состава слагающих их осадочных отложений. Все известные местоскопления размещаются группами, зонами, ассоциациями, образуя различные категории регио­нальных скоплений нефти и газа.
Классификация нефтегазоносных территорий и нефтегазогеологическое районирование являются основой выявления закономерностей размещения скоплений нефти и газа в земной коре, познание которых необходимо для научно обоснованного прогнозирования нефтегазоносности недр и выбора наиболее эффективных направлений поисково-разведочных работ.
Исходя из планетарной приуроченности регионально нефтегазо­носных территорий мира к различных типам геоструктурных элемен­тов земной коры (своды, впадины, прогибы, мегавалы и т.д.), А.А. Бакиров разработал классификацию региональных нефтегазоносных территорий и соподчинённость различных единиц нефтегазогеологичес­кого районирования. Основываясь на тектоническом принципе, А.А. Бакиров в качестве основных единиц нефтегазогеологического райони­рования рекомендует выделять в платформенных и складчатых терри­ториях нефтегазоносные провинции, области и зоны нефтегазонакопления.
Нефтегазоносная провинция - единая геологическая провинция, объединяющая ассоциацию смежных нефтегазоносных областей и ха­рактеризующаяся сходством главных черт региональной геологии, в том числе общностью стратиграфического положения основных реги­онально нефтегазоносных отложений в разрезе. По стратиграфическому возрасту продуктивных отложений нефтегазоносные провинции подразделяются на провинции палеозойского, мезозойского и кайнозойс­кого нефтегазонакопления.
Нефтегазоносная область - территория, приуроченная к одному из крупных геоструктурных элементов, характеризующихся общностью геологического строения и геологической истории развития, включая палеогеографические и литолого-фациальные условия нефтегазообразования и нефтегазонакопления в течение крупных отрезков геологи­ческой истории.
Зонд нефтегазонакопления - ассоциация смежных, сходных по геологическому строению местоскоплений нефти и газа, приуроченных к определенной и в целом единой группе связанных между собой ло­кальных ловушек.
В зависимости от генетического типа составляющих ловушек зоны нефтегазонакопления подразделяются на структурные, литологические, стратиграфические и рифогенные.
Нефтегазоносные провинции, области и зоны нефтегазонакопления относятся к региональным, а местоскопления (месторождения) и зале­жи - к. локальным скоплениям нефти и газа.
Общие закономерности в формировании и размещении залежей нефти и газа
В настоящее время можно считать доказанным, что образование УВ в земной коре генетически связано с формированием осадочных толщ. Отсюда вытекают и важнейшие выводы о закономерностях раз­мещения нефтяных и газовых скоплений в земной коре.
1. Из выявленных в земных недрах ресурсов нефти и газа более 99,9 % приурочено к осадочным образованиям. В разрезе каждой нефтегазоносной провинции содержится один или несколько литолого-стратиграфических комплексов, характеризующихся региональной нефтегазоносностью и разделенных газонефтенепроницаемыми толщами отложений-покрышек.
2. В земной коре залежи и местоскопления нефти и газа группи­руются в зоны нефтегазонакопления, совокупность которых в свою очередь образует нефтегазоносные области, объединяемые в крупные нефтегазоносные провинции. В геоструктурном отношении нефтегазоносные области приурочены на платформах к внутриплатформенным и краевым впадинам, сводовым и линейно вытянутым поднятиям и авлакогенам, а в переходных и складчатых регионах к предгорным и межгорным впадинам, срединным массивам.
3. Изучение условий залегания нефти и газа показывает, что на местоскоплениях нефти и газа могут встречаться одновременно не­сколько типов залежей.
4. Ареалы региональной нефтегазоносности в отложениях различ­ных стратиграфических подразделений в одних случаях совпадают, а в других - территориально смещены.
5. В размещении скоплений нефти и газа наблюдается зональность: выделяются территории преимущественно нефтеносные, преимущественно газоносные, содержащие и газ, и нефть. Зональность может быть и вертикальной.
Вертикальная и региональная зональность в размещении залежей
нефти и газа
Анализ размещения запасов жидких и газообразных УВ в Совет­ском Союзе и за рубежом показывает, что верхние части разреза (до глубины 1,2 - 1,5 км) содержат преимущественно скопления газа, на глу­бинах 1,5 - 3,5 км запасы газа сокращаются и увеличиваются запасы , жидких УВ. Далее с ростом глубины (более 4-5 км) вновь проис­ходит увеличение запасов газообразных УВ и уменьшение запасов нефти. Как правило, в нижней газовой зоне (на глубине более 4 - 5 км) наряду с газом встречается нефть,- растворенная в газе (газоконденсатные залежи).
Такая закономерность в размещении запасов нефти и газа по вер­тикали объясняется генерацией УВ различного фазового состояния на различных уровнях погружения нефтегазоматеринских толщ, т.е. в различных геохимических зонах, выделенных В.А. Соколовым. Кроме того, в возникновении вертикальной зональности распределения жид­ких и газообразных УВ определяющую роль играют также повышенная миграционная способность газообразных УВ по сравнению с нефтью и процессы преобразования нефти в метан на больших глубинах под влиянием высоких температур.
Наряду с вертикальной зональностью в размещении скоплений нефти и газа наблюдается региональная (горизонтальная) зональность.
Например, почти все нефтяные местоскопления Предкавказья сосре­доточены в восточной части этого региона, а преимущественно газовые и газоконденсатные местоскопления - соответственно в Центральном и Западном Предкавказье. В пределах среднеазиатской части эпипалеозойской платформы крупные скопления газа располагаются в восточ­ных районах (местоскопления Шатлык, Газли и др.), в то время как в западных районах (Южно-Мангышлакская впадина) распространены преимущественно нефтяные местоскопления.
Региональная зональность в размещении скоплений нефти и газа наблюдается также в Западной Сибири. Здесь местоскопления нефти содержатся в основном в центральной части низменности, а газа - в пределах обрамления региона, главным образом северного.
Основными факторами образования региональной зональности являются состав исходного 0В, геохимическая и термодинамическая обстановка и условия миграции и аккумуляции УВ.
ПОИСКИ И РАЗВЕДКА ЗАЛЕЖЕЙ НЕФТИ И ГАЗА
ПОНЯТИЕ О ПОИСКАХ И РАЗВЕДКЕ ЗАЛЕЖЕЙ НЕФТИ И ГАЗА
Геологоразведочный процесс и задачи геологического изучения недр
Геологоразведочный процесс определяется как совокупность взаи­мосвязанных, применяемых в определенной последовательности произ­вод­ственных работ и научных исследований, которые должны обеспечить открытие, геолого-экономическую оценку и подготовку к разработке полезного ископаемого. В процессе геологоразведочных работ проводится геологическое изучение недр. В соответствии с Основами за­конодательства о недрах предприятия, организации и учреждения, осуществляющие геологическое изучение недр, должны обеспечивать:
1) рациональное, научно обоснованное направление и эффективность работ по геологическому изучению недр;
2) полноту изучения геологического строения недр, горно-техничес­ких, гидрогеологических и других условий разработки разведанных месторождений, строительства и эксплуатации подземных сооружений, связанных с добычей полезных ископаемых;
3) достоверность определения количества и качества запасов основ­ных и совместно с ними залегающих полезных ископаемых и содержа­щихся в них компонентов, геолого-экономическую оценку месторожде­ний полезных ископаемых;
4) ведение работ по геологическому изучению недр методами и спо­собами, исключающими неоправданные потери полезных ископаемых и снижение их качества;
5) размещение извлекаемых из недр горных пород и полезных ископаемых, исключающее их вредное влияние на окружающую среду;
6) сохранность разведочных горных выработок и буровых скважин, которые могут быть использованы при разработке месторождений и в иных народнохозяйственных целях, и ликвидацию в установленном порядке выработок и скважин, не подлежащих использованию;
7) сохранность геологической и исполнительско-технической доку­ментации, образцов горных пород и руд, керна, дубликатов проб полез­ных ископаемых, которые могут быть использованы при дальнейшем изучении недр, разведке и разработке месторождений полезных ископае­мых, а также при пользовании недрами в целях, не связанных с добычей полезных ископаемых.
Выполнение этих законодательных положений должно лежать в осно­ве дальнейшего совершенствования геологического изучения недр и геологоразведочного процесса, в том числе осуществляемого в нефтяной и газовой промышленности. В значительной мере оно будет обеспечено благодаря использованию новейших достижений науки и техники. Этому будет способствовать также проведение технико-экономического анали­за с помощью ЭВМ, основанного на тщательном изучении всех этапов геологоразведочного процесса в нефтяной и газовой отраслях.
Стадийность геологоразведочных работ на нефть и газ и их
геолого-экономическая оценка
Стадийность геологоразведочных работ на нефть и газ - это опти­мальная, отраженная в планировании и на практике последовательность геологического изучения недр какого-либо региона от начала его освое­ния до обнаружения местоскоплений и решения вопроса об экономи­ческой целесообразности передачи их в разработку.
Деление геологоразведочного процесса на этапы и стадии позволяет устанавливать наиболее рациональную последовательность проведения различных видов и методов исследований, которые обеспечивают реше­ние конечной задачи поисково-разведочных работ - подсчет запасов неф­ти и газа местоскопления и составление проекта разработки его залежей. Стадийность позволяет также определять эффективность работ на различных этапах и стадиях геологоразведочного процесса и контроли­ровать условия смены одних исследований другими или их полного прекращения.
Обнаружение, разведка и подготовка к разработке скоплений нефти и газа занимают значительный период времени, в течение которого про­водятся различные работы. Геологоразведочный процесс начинается с изучения общей геологической характеристики крупных территорий. На следующем этапе выбираются районы с благоприятными для образо­вания и сохранения залежей нефти и газа геологическими условиями, в которых проводится поиск ловушек различного рода. После установле­ния ловушек и получения промышленных притоков нефти и газа начи­нается разведка.
9
Следующий крупный этап накопления осадков плитного чехла, отделенный от предыдущего длительным ранне-среднепалеозойским континентальным перерывом и характеризующийся началом формирования типичных платформенных антеклиз и синеклиз и зон нефтегазонакоп-ления различных типов, соответствует среднедевонско-раннекаменноугольному трансгрессивно-регрессивному циклу. Начало этого цикла, как и предшествовавшего поздневендского, также сопрождалось образованием крупных синеклиз, наложенных на более древние структуры. Весьма характерной являлась уже упоминавшаяся ранее наложенная Камско-Бузулукская палеосинеклиза, сформировавшаяся в восточной части Русской плиты в течение первой трансгрессивной фазы цикла — в эйфельско-раннефранский его этап. Эта палеосинеклиза и ее бортовые зоны вмещают региональный Волго-Уральский ареал промышленной нефтегазоносности эйфельско-нижнефранской терригенной сингенетично-нефтегазоносной формации. На этом этапе снова происходит формирование различных грабеновых форм и сбросов, характеризующих геодинамическую обстановку растяжения земной коры.


Начало следующего среднефранско-раннефаменского этапа ознаменовалось кардинальной сменой типов дислокаций и динамической обстановки. Полностью прекратили развитие и перешли в погребенное состояние грабеновые формы, а на смену им пришли линейные флексурные складки, возникшие в обстановке сжатия над прибортовыми зонами рифейских или эйфельско-раннефранских грабенов (крупного или среднего размера).

На среднефранско-раннефаменском этапе Камско-Бузулукская палеосинеклиза претерпела существенную тектоническую перестройку, в частности связанную с возрождением некоторых рифейских тектонических швов. Это обусловило наложенный относительно ряда региональных тектонических форм указанной синеклизы характер размещения новообразованных некомпенсированных прогибов Камско-Кинельской системы. Одновременно это вызвало изменение типа и размещения зон генерации углеводородов и зон нефтегазонакопления.

Заключительный этап среднедевонско-раннекаменноугольного цикла, завершившегося в ранневизейское время относительно кратковременным континентальным перерывом, характеризовался постепенным затуханием тектонической дифференциации.

Начало нового крупного тектоно-седиментационного визойско-раннепермского цикла вновь ознаменовалось коренным изменением положения основных зон опускания (крупные впадины), резко сместившихся на восток к Уралу и на юг в Прикаспий. Камско-Бузулукская палеосинеклиза оказалась практически полностью тектонически переработанной, за исключением ее самой южной части, и перешла в погребенное состояние. Вместе стем средне-позднекаменноугольные и раннепермские впадины, по крайней мере восточная Приуральская, как и области максимальных опусканий, формировавшиеся на начальных этапах более ранних циклов, также обнаружили резко наложенный характер относи тельно региональных структур предшествующего среднедевонско-ранневизейского этапа. Это закреплено в современных резко несогласных в плане соотношениях Предуральского краевого прогиба с погребенными прогибами Камско-Кинельской системы и другими более древними региональными палеоформами. Вместе с областями основных прогибаний (впадины) мигрировали и зоны преимущественного накопления органического вещества и вероятной генерации углеводородов, что обусловило появление новых контуров ареалов сингенетичной нефтегазоносности.

Наложенный тип свойствен также и остаточным мезозойско-кайнозойским впадинам восточной части Русской плиты, лишенным промышленной нефтегазоносности.

Таким образом, одним из важнейших результатов стадийно-направленного развития древней плиты и циклического литогенеза явился наложенный характер областей основных прогибаний, развившихся на на чальных этапах каждого нового цикла, относительно структур предыдущего. Это в первую очередь определило отсутствие полного подобия в размещении и форме региональных ареалов промышленной нефтегазоносности ряда сингенетично-нефтегазоносных комплексов. Вторая важная черта заключается в том, что в каждом из таких комплексов размещение залежей нефти и газа и зон нефтегазонакопления определяется особенностями. расположения и характером пространственного группирования ловушек различного генезиса, часто не совпадающими в разных комплексах, а не крупными современными региональными формами-сводами и впадинами.

Пространственно-генетические общности залежей нефти и газа — зоны нефтегазонакопления — в природных резервуарах образуют регионально обособленные ассоциации (системы) сопроисхождения или, частично, сонахождения [Клубов, 1978], принадлежащие как латеральным, таки вертикальным рядам группирования ловушек. В первом случае ловушки сопроисхождения образуются в составе одного и того же природного резервуара (сингенетично-нефтегазоносной комплекс) и генетически относятся к типам терригенно (или биогермно) - аккумулятивных, денудационно-аккумулятивных и эрозионно-останцовых (в процессе развития — эрозионно-тектонических) форм. Эти так называемые неантиклинальные ловушки охватывают обычно узкие стратиграфические интервалы, развиваются за короткий срок и в подавляющем большинстве носят погребенный характер. Генетически они наиболее тесно связаны с постадийной литолого-палеогеографической и палеогеоморфологической дифференциацией осадочного заполнения НГБ.

К ассоциациям ловушек сопроисхождения относятся также вертикальные ряды группирования, охватывающие несколько смежных сингенетично-нефтегазоносных комплесов или весь осадочный разрез бассейна. Это разного рода дислокации — складки и локальные поднятия кон-или постседиментационного развития, относящиеся по типу к тектогенным (антиклинальные ловушки). Они чаще всего принадлежат к сквозным структурам. Тектоническое развитие таких ловушек обычно проявляется в неравномерном по величине и знаку изменении во времени их амплитуд, а пространственное размещение обусловлено региональным планом распределения тектонических напряжений в целом и в каждом отдельном блоке земной коры. Чаще всего эти напряжения разряжаются формированием региональной сети разломов, которым в своем размещении и подчиняются системы дислокационных ловушек, составляющих зоны нефтегазонакопления.

Тектонические зоны нефтегазонакопления могут пересекать разные на разных стратиграфических уровнях зоны атектогенного типа. В узлах пересечения таких зон образуются сложные или комбинированные ловушки. Это ловушки (и зоны) сонахождения.

Следовательно, в отдельных сингенетично-нефтегазоносных комплексах или в структурных этажах существуют самостоятельные пространственно-обособленные зоны нефтегазонакопления тектогенного или палео-геоморфогенного типа, проекции которых могут соотноситься по-разному: не совпадать, пересекаться в плане, частично или полностью совпадать между собой, образуя в последних случаях зоны комбинированного типа. На фоне постадийного развития платформенного чехла все эти зоны нефтегазонакопления характеризуются рядом отличительных черт, которые могут быть наиболее четко вскрыты с помощью некоторых основных моделей.

Первая модель характеризует условия развития сквозных практически по всему разрезу НГБ тектогенных зон нефтегазонакопления [Мкртчян, 1976]. Пространственно и генетически они связаны с рифейскими грабенами и с эйфельско-нижнефранскими унаследованными или наложенными на эти последние крупными и средними грабенообразными палеоструктурами.

Развитие ассоциаций тектогенных ловушек (флексурные складки) проходит две стадии: начальную -растяжение (образование грабена) и конечную — сжатие, вследствие чего развивается до четырех типов валов: внутриграбеновых и надграбеновых, прибортовых и надбортовых.

Со стадией сжатия связано также формирование линейно-прерывистых цепочек поздних горстовидных поднятий. Еще два типа тектогенных зон нефтегазонакопления связаны со структурами растяжения — пашийско-кыновскими микрограбенами и остаточными (ранними) горстообразными формами. Других типов тектогенных зон на древней платформе не обнаружено.

Второй ряд включает ловушки аккумулятивного и эрозионного типа. Терригенные песчаные аккумулятивные ловушки и эрозионные формы формируются главным образом на начальном трансгрессивном и заключительном регрессивном этапах осадочного цикла. Карбонатные органогенные ловушки — различного рода постройки — образуются в основном на средних этапах циклов, в условиях наиболее широких морских трансгрессий, и обычно сопровождают формирование некомпенсированных прогибов. Среди них различают маломощные шельфовые биогермы, сооружения барьерного типа и рифовые массивы островного и атолловидного кольцевого типа.

Шельфовые биогермы генетически связаны с региональными биогермно-карбонатными палеошельфами, закономерно приурочены к их внешним частям, которые характеризуются наибольшей мощностью слагающего карбонатного комплекса. Указанные постройки отсутствуют во внутренней (центральной) части палеошельфа, выделяющейся регионально сокращенными мощностями и стратиграфическим объемом отложений, составляющих шельф.

Сооружения барьерного типа , если они получают развитие, располагаются в краевой зоне шельфа, обращенной к некомпенсированному бассейну. Рифогенные постройки островного и атолловидного кольцевого типов распространены только в пределах некомпенсированных прогибов, где они размещаются в зависимости от конседиментационного палеогеоморфологического и палеотектонического расчленения дна бассейна.

Изложенное позволяет подчеркнуть, что стадийность тектонической эволюции древней платформы находит выражение в последовательной смене генетических типов не только крупных тектонических форм и осадочных бассейнов, обусловливая ход процессов нефтегазообразования, но и малых структур, играющих главную роль в нефтегазонакоплении.

В связи с этим, помимо исследования главных стадий развития платформ, все более очевидной становится высокая научная и практическая значимость анализа существенно более дробных этапов тектонической эволюции и осадконакопления НГБ древних платформ.
Литература

    • Валеев Р.Н., Клубов В.А., Островский М.Н. Сравнительный анализ условий формирования и пространственного размещения авлакогенов Русской платформы. — Сов. геол., 1969, № 4.
    • Клубов В.А. Палеоструктурный анализ восточных районов Русской платформы. М.: Недра, 1973.
    • Клубов В.А. Нефтегазоносные ловушки как система. — В кн.: Поисково-разведочные работы на нефть и газ. М., 1978. (Тр. ИГиРГИ; Вып. 17).
    • Крылов Н.А., Корж М.В. Осадочные бассейны молодых платформ (эволюция и нефтегазоносность) . - В кн.: Закономерности формирования и размещения нефтяных и газовых месторождений. М., 1978. (Тр. ИГиРГИ; Вып. 16).
    • Максимов С.П., Еременко Н.А., Ботнева Т.И. и др. О цикличности процессов нефтегазообразования. — В кн.: Губкинские чтения. М.: Недра, 1972.
    • Мкртчян О.М. О пространственно-генетической связи тектонических валов с грабенообразными палеоструктурами (на примере Куйбышевского Заволжья) — Докл. АН СССР, 1976, т. 228, №3.
    • Успенская Н.Ю. Закономерности распространения нефтегазоносности в платформенном чехле Сибирско-Туранской и Западно-Европейской платформы. — В кн.: Генезис нефти и газа. М.: Недра, 1967.
10
Размещение залежей нефти и газа на древней платформе в связи со стадийностью ее тектонического развития
    • Размещение залежей нефти и газа на древней платформе в связи со стадийностью ее тектонического развития
Статья добавлена: Март 2017
 Известны шесть главных природных факторов, взаимодействие которых вызывает в тех или иных масштабах процессы нефтегазообразования, нефтегазонакопления и регулирует размещение залежей нефти и газа в земной коре: это длительное прогибание седиментационных бассейнов, цикличность осадконакопления в них, термобарические воздействия на РОВ и генерация УВ, тектоническая дифференциация структуры НГБ, гидродинамика миграционных процессов и сохранность скоплений УВ. В ряду этих факторов со стадийностью и сменой режимов тектонических движений наиболее тесно связаны два: цикличность и тектоническая дифференциации. Оба они действуют на фоне общего относительного прогибания дна бассейна седиментации.

Прогибание и, как следствие, формирование палеовпадин (элементарные осадочные бассейны) служат одной из главных предпосылок образования внутри их контуров региональным ареалов нефтегазоносности в тех случаях, когда эти бассейны являются нефтегазоносными, т.е. в них происходит генерация и накопление УВ в сингенетично-нефтегазоносных формациях.

Это можно иллюстрировать на примере палеозойских нефтегазоносных комлексов восточной части Русской плиты. Здесь западные границы региональных ареалов нефтегазоносности в различных палеозойских комплексах (т.е. в отдельных нефтегазоносных суббассейнах) расположены в целом независимо относительно современных крупных структур поверхности фундамента и осадочного чехла и пересекают различного рода тектонические формы. Особо следует подчеркнуть, что региональные ареалы промышленных залежей нефти и газа в палеозойском плитном чехле размещаются без всякой избирательности к древнейшим, в основном доплитным глубинным структурам восточной части платформы — авлакогенам и погребенным щитам, синеклизам и антеклизам, выступам и впадинам. Положение указанных ареалов подчиняется иным региональным зависимостям, которые выявляются при историко-геологическом подходе к их исследованию, в процессе изучения стадийности в развитии древней платформы.

В позднем протерозое и раннем-среднем палеозое на востоке Русской плиты оформировались Воронежская и Волго-Уральская антеклизы, окаймленные областями глубоких и длительных прогибаний, выполненных мощными толщами осадков. На этапе девонского терригенного осадконакопления на указанные древние глубинные структуры несогласно наложилась первая в палеозое крупнейшая Камско-Бузулукская палеосинеклиза, окаймленная региональными системами выступов и поднятий. Синеклиза включала две крупные впадины, представлявшие собой области наиболее значительного накопления осадков (эйфельско-нижнефранские элементарные осадочные бассейны) . По геохимическим данным, главный очаг генерации УВ связан с южным более круным Радаевско-Бузулукским бассейном. Общий ареал нефтегазоносности терригенной девонской формации не выходит за пределы Камско-Бузулукской палеосинеклизы, представляющей, таким образом, палео-тектоническую основу эйфельско-нижнефранского нефтегазоносного бассейна. В позднем девоне—турне на указанную палеосинеклизу и контролируемые ею осадочные суббассейны наложилась Камско-Кинельская система некомпенсированных прогибов (нефтегазогенерировавшие осадочные суббассейны) и региональных биогермно-карбонатных шельфов (основные области нефтегазонакопления). В средне-позднекаменноугольное время область осадконакопления на востоке Русской плиты значительно расширилась, а зоны максимальных опусканий захватили Приуралье и миогеосинклинальную область Урала. В раннепермское время области наибольших прогибаний, сопровождавшихся формированием некомпенсированных впадин и приуроченных к ним депрессионных (доманикового типа) осадков, располагались на востоке, в пределах Предуральского прогиба и на юге, в Бузулукской впадине.


Таким образом, общий (суммарный по всем нефтегазоносным формациям) ареал распространения залежей нефти и газа на древней платформе контролируется сменяющими одна другую, часто не совпадающими по местоположению областями относительно длительного прогибания земной коры — впадинами, представляющими собой части палеозойских областей осадконакопления. Именно такие палеовпадины, в которых накапливались сингенетично-нефтегазоносные формации, рассматриваются в качестве нефтегазоносных суббассейнов.

Пространственное размещение скоплений УВ внутри регионального ареала в каждом из смежных сингенетично-нефтегазоносных комплексов не одинаково в плане и контролируется структурными формами различных морфолого-генетических типов. Эти различия — следствие стадийного тектонического развития Волго-Уральской нефтегазоносной провинции, что реально проявляется в цикличности осадконакопления и в стадийности тектонической дифференциации отложений этих комплексов.

Связь нефтегазообразования с цикличностью осадконакопления как геологическим процессом заключается в проявлении нескольких крупных трансгрессивно-регрессивных циклов осадконакопления, обусловливающих повторяемость в разрезе НГБ сингенетично-нефтегазоносных комплексов, коллекторских и экранирующих толщ. Геохимический аспект этого процесса заключается в периодическом возобновлении эмиграции УВ из сингенетично-нефтегазоносных комплексов при погружении каждого из них на глубину, соответствующую необходимому уровню катагенеза. Поэтому повторяемость циклов повышает общий нефтегазоносный потенциал бассейна. При этом достоверно установлено, что во всех случаях формации, обогащенные органическим веществом, чаще приурочены к трансгрессивным частям циклов и, как правило, редко встречаются в регрессивных частях [Успенская, 1967; Максимов и др., 1972; и др.]. Это одна из закономерностей нефтегазообразования, носящая всеобщий характер. Она может быть прослежена на примерах как древних и молодых плит, так и геосинклинальных областей [Крылов, Корж, 1978]. Циклы осадконакопления и цикличность нефтегазообразования при этом зависят не столько от стадийности тектонического развития региона, сколько от размаха в нем и частоты колебательных движений широкого регионального охвата.


Проблема цикличности очень широка по содержанию, сравнительно хорошо разработана, имеет самостоятельное значение и поэтому лишь отчасти затрагивается в настоящей статье.

Нефтегазонакопление и пространственное размещение залежей нефти и газа в большей мере обусловлены другими зависимостями, значитесь но теснее связанными именно со стадийностью тектонического развития. Они вызваны спецификой тектонической и палеогеоморфологичес-кой дифференциации сменяющих друг друга во времени сингенетично-нефтегазоносных комплексов и унаследованием каждым из них некоторых тектонических черт предшествовавшего этапа. Основной результат этого процесса заключается в том, что последовательная, от стадии к стадии тектоническая дифференциация приводит к смене генетических типов и пространственного размещения зон нефтегазонакопления в разрезе ряда смежных сингенетично-нефтегазоносных комплексов.

Структурные соотношения между зонами нефтегазонакопления складываются в процессе стадийного тектонического развития региона. Задача состоит в том, чтобы раскрыть механизм формирования парагенезов структур и ловушек в условиях их самостоятельного одновременного латерального и вертикального группирования, руководствуясь по строением общей и частных моделей развития участка земной коры, так как именно эти модели в первую очередь определяют избирательность поэтажного и поэтапного заполнения ловушек нефтью и газом в процессе миграции и закономерности их пространственного размещения.

В настоящее время в объеме осадочного чехла древних платформ большинство исследователей выделяют преимущественно два составляющих их крупных структурных комплекса — доплитный (авлакогенный, или промежуточный) и плитный, отражающие главные стадии развития платформ. Делаются попытки подразделения доплитного комплекса на два самостоятельных мегакомппекса, выраженных в понятиях о квази и катаплатформенных чехлах, или авлакогенном и промежуточном, и выделения в последнем случае трех основных стадий тектонической эволюции древних платформ.


Геолого-геофизическая освещенность доплитного комплекса Восточно-Европейской платформы и особенно Русской плиты все еще находится на невысоком уровне. В связи с этим представления об основных эта пах осадконакопления и формировании главных типов тектонических структур в доплитную стадию носят весьма схематический характер. Отметим лишь вероятность в ряде случаев наследования рифейскими авлакогенами древних протогеосинклинальных трогов доавлакогенной стадии развития (раннепротерозойской — ?) [Валеев и др., 1969]. Для собственно авлзкогенной рифейско-ранневендской стадии характерна генетическая связь перикратонных опусканий и авлакогенов в пригеосинклинальной зоне плиты [Клубов, 1973]. Эта стадия в целом характеризуется преобладанием динамической обстановки растяжения земной коры.

Начало плитной стадии знаменуется формированием на ее первом крупном поздневендском этапе первичных платформенных синеклиз, которые не были в прямом смысле унаследованы от рифейских авлакогенов, а представляли собой формы, наложенные на всю систему риф тов и полигональных блоков, сложившуюся в конце доплитмой стадии. Возможно, на этом этапе уже проявились напряжения сжатия.
Страницы: [1] 2 3 ... 10