21
О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре / Re: О волновой природе напряжений и деформаций и механизме концентрации пи
« Последний ответ от Устьянцев Валерий Николаевич Сентября 06, 2024, 09:47:13 am »Б.Б. Таль-Вирский [1972] показал, что «значения теплового потока в Средней Азии увеличиваются с приближением к тектонически активным областям и что, геоизотермы нередко обладают обращенным рельефом относительно стратоповерхностей». На этом основании он пришел к выводу, что «ни поверхность фундамента, ни поверхность «Мохо» не могут приниматься за изотермические» [1]. Это свидетельствует о том, что тепловые потоки распространяются вдоль направляющих структур, которыми являются разломы.
М.И. Погребицкий, М.В. Рац, С.Н. Чернышев в 1971 году показали, что «с приближением к разрыву число трещин заметно возрастает, причем довольно резко. По мере удаления от разрыва графики интенсивности трещиноватости выполаживаются и становятся практически горизонтальными».
В более ранних работах, эти же авторы, на основе исследования трещиноватости пород Таджикской депрессии, Центрального Казахстана и траппов Приангарья установили, что «зависимость расстояния между соседними трещинами от расстояния до разрыва аппроксимируется экспоненциальной функцией и напоминает картину затухания напряжений с удалением от очагов землетрясений в модели Рейда-Беньофа, и фактически наблюдаемые смещения разломов типа Сан-Адерс и др.» [3].
«Очень важным является вопрос структурообразования в мантии, литосфере и коре, особенно пологозалегающих трещинно-брекчиевых структур, которые часто являются рудолокализующими (для твёрдых полезных ископаемых, воды и углеводородов)» [В.В. Богацкий, 1986] [3].
В Памир-Тяньшаньском блоке, углеводородное сырье локализуется в прогибах и впадинах, образовавшихся в связи с растяжением коры в мезозое и кайнозое, когда образовывались впадины глубиной до 9-12 км (Ферганская, Сурхандарьинская, Кашкадарьинская). Юрско-меловые и палеогеновые отложения преимущественно морские карбонатно-терригенного состава (Тянь-Шань) и только в пределах Таджикской впадины (Памир) в юрское время, накапливались мощные гипсово-ангидридовые толщи, мощность которых с запада на восток увеличивается с 3 до 5 км, в это время, складки, прогибы имели широкие простирания Локализация УВ сырья происходит в зоне влияния Южно-Ферганского разлома широтного простирания, который маркируется выходами ультраосновных пород. [14,35].
Первичная карта.
Аналитическая структурная карта. Объекты земной коры и мантии, месторождения УВ, - контролируются разломами (прямые линии черного и красного цвета — разломы разрывного характера; синие — сдвиги; коричневые - надвиги).
Выделяется широкая полоса от Карпат до Западной Сибири, - зоны систем глубинных разломов меридионального простирания, которая носит глобальный характер и контролирует месторождения УВ, золота и др. полезных ископаемых. В данной полосе выделяются зоны систем разломов разрывного типа: около девяти-десяти систем.
Выделены зоны систем широтного простирания - черные линии - разломы разрывного характера, - УВ - выводящие.
Системы зон разломов СВ простирания (около пяти систем) - надвиги, - способствуют формированию структурных ловушек, - линии коричневого цвета.
Выделены зоны нарушений сдвигов (около пяти систем), - линии синего цвета.
Зоны систем тектонических нарушений опоясывают систему Земли.
Матрица объектов системы Земли. Геометризация. Основные четыре направления простирания тектонических структур.
Подвижные пояса. Тектонические нарушения и подвижные пояса.
Составил — В.Н. Устьянцев, 31.07. 2019.
Ю.С. Гешафт, А.Я. Састычовский подчеркивают: «… Мощные проявления магматизма на границе перми, триаса, юры и в мелу… ». Ревивация магмагенеза произошла и в пределах Западной Сибири. Очевидно, активизировались очаги магмы байкальского цикла магматектогенеза, под воздействием силы тяжести осадочной толщ.
Пересчеты магнитных аномалий, для высот менее 50 км, показывают, что четко выделяются две системы аномалий Северо-Западного простирания. Эстонско-Прикаспийско-Таджикская система аномалий, представлена преимущественно отрицательными аномалиями от 0 до 1 мэ, причем ось системы минимумов протягивается через Воронежский массив, Прикаспийскую низменность, низовье Сырдарьи, Ферганскую долину и Памир. Крупные положительные аномалии (+1 до +2 мэ) отмечаются в зоне Бельтаусского дробления, Букантау и небольшие в Голодной степи и Фарабском поднятии (+1 мэ). Северной границей системы является Каратау-Ферганский разлом, а Южной — Днепрово-Донецко-Мангышлакско-Приамударьинский.
К югу располагаются Балтийско — Черноморско - Закаспийская система, представленная четко видно и кулисообразно расположенными интенсивными положительными аномалиями (до 2-4 мэ). Ось системы максимумов (ΔТ) проходит через Красноводский полуостров и Копетдаг. Эндогенные энергетические потоки приводят к формированию зон с избыточной энергией.
Ряд особенностей глубинного строения выявлен А.А. Борисовым, путем пересчета аномального поля магнитных аномалий на различные высоты. Пересчетами для высот 100-200 км установлена аномальность субширотного характера: поля положительных аномалий прослеживаются вдоль параллелей 70, 56 и 42 градусов, а отрицательных вдоль параллелей 65 и 50 градусов. Узбой-Таримская зона — п-ль 420 — прослеживается до акватоииии Черного моря, и контроликует структуры Кавказа. .
В зоне сочленения эпипалеозойских, более древних плит, основной потенциал нефтегазоносности, связывается с основанием осадочного чехла, в области корового ослабленного горизонта. Основной потенциал нефтегазоносности, связывается с процессами, происходящими в литосфере и верхней мантии. [Академик, д. г-м. н. В.И. Попов].
Срединные массивы области плит и платформ - маркируют зоны генерации нефти и газа… Срединные массивы области подвижных поясов - маркируют зоны дегазации, в связи с тем, что они не перекрыты осадочным чехлом, в котором происходит локализация минерального сырья. Недооценена роль роль погребенных структур Байкальского цикла тектогенеза - СЗ простирание - рифей. В ту эпоху формировалась осадочная формация - серия "Блайна", в которой аккумулировалось минеральное сырье - Копет-Даг, С. Кавказ, З. Сибирь, Тиман.
Рифейские геосинклинальные образования отмечаются в полосе от Карпат (П. С. Семененко), через С. Кавказ (хасаутская свита) в Восточный Иран — альгонская серия мюрид; в резуьтате поздне байкальской фазы тектогенеза — галийский цикл, смяты в складки.
Другая геосинклинальная зона протягивается через Тиман и восточную часть Тургайского прогиба (Ю.Д. Смирнов) в Северный Тянь-Шань (В.Г. Королев). Основной цикл складчатости — байкальский (тиманский — Ю.Д. Смирнов, 1964).
Н.П. Хераскову (1963) - одно из существенных отличий от более молодых геосинклинальных систем — широкие окраинные прогибы байкалид.
Осадочные образования прогиба Гималаев и Байконура, имеют одинаковый формационный состав (серия Блайна, в которых происходит локализация УВ). Серия Блайна характерна и для Больше-Каратаусского, Чаткальского, Тимано-Нарынского прогибов. [57].
А.И. Суворов установил, что «разломы северо-восточного направления характеризуются надвигами, а северо-западные - сдвигами, которые сочленяются под прямым или тупым углами и образуют пары разломов (динамопары)». До рифея, более проявлены были меридионально-широтные направления (разрывной тип нарушений), затем в полной мере развились диагональные тектонопары [40, 41].
«Разрушение горных пород начинается там, где энергия обусловливает появление такого поля напряжения, потенциал которого выше прочности пород. Сопротивление горных пород на растяжение 6-15 раз меньше их сопротивления сжатия, то-есть, разрушение начинается в областях растяжений и сдвигов (разнонаправленное приложение пары сил)» [В.В. Богацкий, 1986] [3].
Парные разломы.
«Парными разломами принято называть пару субпараллельно расположенных линейных разломов (В.Е. Хаин, Е.Е. Милановский), между которыми располагается зона высокой степени подвижности и проницаемости, с своеобразной истории и сложного строения, которая отражает положение глубинного разлома» [1, 23].
Парные разломы более выражены в пределах развития срединных массивов, глубина их заложения достигает 10 км, далее они выполаживаются и переходят в глубинные.
Пересекаясь зоны разбивают кору на блоки. Подвижки по разломам приводят к деформациям, то-есть, эти зоны имеют тенденцию к разрастанию. Зоны имеют северо-западные и северо-восточные простирания и образуют сдвиго-надвиговые динамопары. Впервые в Средней Азии выделили отрезки парных разломов в Южном Карамазаре (Моголтау) - Курусай-Окуртауский и Северо-Моголтауский. Затем в 1989, были выделены еще девять парных разломов на всей территории Кураминского хребта [В.Н. Устьянцев, 1989] [14], и найдены их продолжения по всей Чаткало-Кураминской зоне. Парные разломы установлены в Карачатыре (Улутауский) и Букантау (Букантауский).
Парные разломы представляют собой шовные зоны между двумя положительными и отрицательными блоками. В парном разломе различаются главный оконтуривающий шовную зону разлом и второстепенный, возникающий немного позже и представляющий основную «оперяющую» структуру главного разлома. Главный разлом располагается ближе к отрицательной структуре, «оперяющий» - к положительной. Падение основных плоскостей разломов — под положительные структуры. Активно развиваться парные разломы стали с рифея, до этого времени наиболее проявлены были широтные и меридиональные направления (разрывной, тип нарушений).
Пересекаясь парные разломы разбивают Земную кору на "элементарные" блоки (12×12) км Кураминский массив) (Рис. 6). Генезис парных разломов связан с автоколебательной системой Земли и с вращением системы. Наиболее проявлены парные разломы становятся с рифея, когда произошло увеличение радиуса Земли и скорости ее вращения. Изменение параметрических характеристик системы произошло в связи с образованием гранитомето-морфического слоя. За счет постоянных блоковых движений, количество трещин в парных разломах, простирающихся параллельно основному сместителю увеличивается, что приводит к увеличению мощности этих разломов и степени их проницаемости [14].
Из всех типов разрывных нарушений. наиболее благоприятны для локализации месторождений являются парные разломы. Парные разломы выполаживаются на глубине 10 км и переходят в разломы глубокого заложения. То-есть, парные разломы контролируют зоны миграции и генерации УВ.
Парные разломы способствуют понижению давления давления, что приводит к процессу формирования месторождений минерального сырья различного типа и вида — Р менее 7 кбар, Т менее 5000 С.
Линеамент Северного Кавказа, по В. Елисееву, 2018, геометризация: В.Н. Устьянцев, 2019.
К линеаменту приурочены фрагментарно, магматические формации основного состава.
Просвечивающиеся структуры:
Линеаменты — самые крупные тектонические, глобальные структуры (архей-средний протерозой);
- линейные, очень протяженные, - тысячи км;
- мощность — до 10 км;
- располагаются с шагом от 50 до 100 км, сквозного характера нарушения, - флексурно-разрывного типа. Данные нарушения, более всего проявлены в кристаллическом фундаменте — архей-протерозой, (до смены плана деформации).
Линеаменты проявлены в кровле гранито-метаморфического слоя. Простирание — меридионально-широтное, — флексурно-разрывная тектонопара и диагональное — флексуро-сдвиго-надвиговая тектонопара (СВ — флексуро-надвиги; СЗ — флексуро-сдвиги).
Линеаменты хорошо выражены в кровле гранито-метаморфического слоя, часто являются флюидовыводящими структурами. Именно, в основном, с этими структурами связывается формирование глобального резервуара газонасыщенных пород основного состава, в подошве земной, который "блокируется" сверху энергетическим барьером. В эпохи деструкции земной коры, происходит приоткрывание разломов и подпитка резервуаров газом, области верхней тектоносферы, которая располагается выше энергетического барьера - глубины 0-12 км.
Линеаменты четырех основных направлений, прослеживаются по комплексу факторов:
— по прямолинейным участкам рельефа и геологическим контурам, древней и современной гидросети;
- по четким границам между ландшафтами, областями денудации и аккумуляции, возникновение которых определено эндогенными причинами. Они видны в виде светлых или темных полос (в зависимости от степени отражения, излучения, или поглощения породами) на телевизионных инфракрасных, радарных многоспектральных фотоматериалах [39].
Линеаменты иногда совпадают с простиранием глубинных разломов.
В местах пересечения линеаментами руных зон, в последних отмечается повышенные концентрации полезного компонента.
Так, по северо-восточному простиранию зон линеаментов (надвиги), отмечаются изометричные магнитные максимумы. В зоне линеамента, аномалии силы тяжести, представляют собой системы небольших, продолжающих друг друга гравитационных ступеней, ограничивающих по размерам аномалии обоих знаков. В некоторых случаях отмечается разворот изоаномал, (по материалам Н.А. Фузайлова, 1976) [23], а с ними и локальных аномалий в северо-восточном направлении [23].
Изометричные магнитные максимумы свидетельствуют о поттоке по зоне линеамента газонасыщенной магмы основного состава, из области подошвы земной коры. С узлом пересечения линеаментов широтного и северо-восточного простирания, связывается генезис золоторудного, гигантского месторождения Мурунтау и гигантского месторождения метана, — Газли. Линеаменты, ответственны за процесс формирования гранито-метаморфического слоя, с которым генетически и парагенетически, связывается формирование крупных месторождений УВ.
О зонах Беньофа.
Сейсмологическая информация, особенно с тех пор, как сейсмологи научились определять направление смещения очагов землетрясений, заняла вообще очень важное место в арсенале средств изучения современных тектонических движений и деформаций. Именно сейсмологам мы обязаны открытием сверхглубинных наклонных разломов по периферии впадин океанов (получивших в мировой литературе зон Беньофа), хотя первым геологом, открывшим их значение, был А.Н. Заварицкий.
Сейсмологи же установили поддвиговый характер перемещений по этим разломам. В свою очередь вулканологи отметили закономерную связь с зонами Беньофа, андезитового вулканизма и столь же закономерное изменение состава магматических продуктов в направление снижения содержания кремнекислоты и щелочей, и увеличение отношения окислов калия к окислам натрия по мере удаления от выхода этих зон на поверхность.
Большое значение имело также, обнаружение приуроченности к вероятным древним аналогам зон Беньофа парных поясов метаморфизма, – высокой температуры и низкого или умеренного давления в висячем боку, и низкой температуры, и высокого давления (глаукофан-главсолитовая фация), - в лежачем боку, (по данным японского петролога А. Миясиро).
С древними зонами Беньофа оказываются связанными выходы офиолитов, особенно серпентинового меланжа.
Принципиально новая информация привела к коренному пересмотру ряда положений учения о геосинклиналях. Было опровергнуто представление о мелководности геосинклинальных бассейнов и характерных для них формаций (например – флишевой. Особенно плодотворно оказалось сравнение с разрезом океанической коры, составленным по результатам драгирования и сейсморазведки (теперь первый и отчасти второй слой океанической коры, изученной также бурением).
Это сравнение дало также возможность обосновать представление о заложении геосинклиналей на коре океанического типа и последовательным преобразованием этой коры в континентальную в ходе их эволюции.
Дополнительное обоснование получило сопоставление геоантиклиналей, возникающих на зрелой стадии геосинклинального процесса, с островными дугами, при этом определилось ведущая роль в этом процессе зон Вадати-Заворицкого-Беньофа [1,7,23].
Краевые разломы. На огромное значение краевых разломов в истории развития земной коры было указано В.А. Обручевым и В.И. Поповым (1938). В.И. Попов краевые разломы назвал «дискорданными линиями», и считал, что это – крупные разломы сингенетичные с образованием осадков, которые разделяют области согласного и несогласного накопления отложений (обычно разделяющихся в обеих областях по мощности и по фациальному составу). Это позволяет обойтись без предположения о тектоническом сближении фаций, маловероятным при выдержанном крутом падении разграничивающих их разломов. Он также отметил краевое положение разломов по отношению к простиранию основных структур [7,1,23].
А.В. Пейве (1945) относит эти разломы к глубинным. М.М. Кухтиков (1968) отмечал, что в направлении простирания зон межзональные разломы непрерывно прослеживаются на многие десятки и сотни километров, т.е. на те же расстояния, что и тектонические зоны складчатой области. Анализ краевых разломов показал, что это - группа нарушений, продольная (согласная) по отношению к простиранию геоантиклинальных складчатых сооружений - зон повышенной деформации земной коры, она тесно связана с их развитием. В то же время краевые разломы составлены из отдельных отрезков региональных разломов различных простираний. Общая черта краевых разломов – граничные дизъюнктивные дислокации, разделяющие различные по знаку структурные формы, своеобразные границы смены мощностей и типов осадков характерных рудопроявлений и магматизма. Эта система крутопадающих разломов, сопровождаемых зонами дробления, рассланцивания, повышенного метаморфизма, часто сопровождается поясами различного типа оруденений. Краевые разломы ограничивают древние платформы и активизированные их выступы от геосинклинальных поясов: Донбассо-Уральского, Донбассо-Южно-Тяньшаньского и Среднеазиатского [О.М. Борисов] [1, 23].
Историко-геологические данные позволяют проследить миграцию зон Заварицкого-Беньофа и континентальных краевых разломов с запада на восток. Так, по мере миграции в пространстве структурно-фациальной единицы, происходит и перемещение зоны краевого разлома. Краевой разлом рифейской, каледонской и герцинской геосинклинали Урала мигрировал с запада на восток. Структурная линия Николаева в каледонский цикл отделяла каледонскую область от располагающейся к югу Русско-Китайской платформы, в герцинский цикл эта линия уже располагалась внутри Урало-Мангольского складчатого пояса, разделяя каледониды от герцинид. В Японии, где была впервые установлена характерная для зон Беньофа метаморфическая зональность, предполагаемые древние зоны Беньофа параллельны современной тектоно-метаморфической зоне, историко-геологические данные позволяют проследить миграцию этих зон в сторону океана, на восток.
Общекоровые сбросы.
Общекоровые сбросы представляют тип глубинных разломов, которые сопровождают растяжения земной коры. Соседние участки последней раздвигаются и между ними возникает наклонные нормальные сбросы. Смещения по ним компенсируют растяжение. На поверхности при этом образуется не один, а система сбросов. В сумме своей перемещения по ним ведут к образованию сложных грабенов, разделенных внутри на многочисленные грабены и горсты второго и следующих порядков. Такие сложные грабены большой протяженности, измеряемые многими сотнями и тысячами километров с большой амплитудой вертикальных смещений, достигающих нескольких километров принято называть рифтоподобными структурами [2].
Отметим, что все блоки, такие как Памиро-Тяньшаньский, Алтайский, Саяны, находятся в зоне влияния глубинного Трансконтинентального Азиатско-Монголо-Охотского разлома, который является коллектором, выводящим вещество в верхние мантийные сферы. В результате чего, формируются структурные элементы автоколебательной системы Земли, которые в конечном счете, образуют структурные объекты, располагающиеся в геологическом пространстве системы Земли закономерно
М.И. Погребицкий, М.В. Рац, С.Н. Чернышев в 1971 году показали, что «с приближением к разрыву число трещин заметно возрастает, причем довольно резко. По мере удаления от разрыва графики интенсивности трещиноватости выполаживаются и становятся практически горизонтальными».
В более ранних работах, эти же авторы, на основе исследования трещиноватости пород Таджикской депрессии, Центрального Казахстана и траппов Приангарья установили, что «зависимость расстояния между соседними трещинами от расстояния до разрыва аппроксимируется экспоненциальной функцией и напоминает картину затухания напряжений с удалением от очагов землетрясений в модели Рейда-Беньофа, и фактически наблюдаемые смещения разломов типа Сан-Адерс и др.» [3].
«Очень важным является вопрос структурообразования в мантии, литосфере и коре, особенно пологозалегающих трещинно-брекчиевых структур, которые часто являются рудолокализующими (для твёрдых полезных ископаемых, воды и углеводородов)» [В.В. Богацкий, 1986] [3].
В Памир-Тяньшаньском блоке, углеводородное сырье локализуется в прогибах и впадинах, образовавшихся в связи с растяжением коры в мезозое и кайнозое, когда образовывались впадины глубиной до 9-12 км (Ферганская, Сурхандарьинская, Кашкадарьинская). Юрско-меловые и палеогеновые отложения преимущественно морские карбонатно-терригенного состава (Тянь-Шань) и только в пределах Таджикской впадины (Памир) в юрское время, накапливались мощные гипсово-ангидридовые толщи, мощность которых с запада на восток увеличивается с 3 до 5 км, в это время, складки, прогибы имели широкие простирания Локализация УВ сырья происходит в зоне влияния Южно-Ферганского разлома широтного простирания, который маркируется выходами ультраосновных пород. [14,35].
Первичная карта.
Аналитическая структурная карта. Объекты земной коры и мантии, месторождения УВ, - контролируются разломами (прямые линии черного и красного цвета — разломы разрывного характера; синие — сдвиги; коричневые - надвиги).
Выделяется широкая полоса от Карпат до Западной Сибири, - зоны систем глубинных разломов меридионального простирания, которая носит глобальный характер и контролирует месторождения УВ, золота и др. полезных ископаемых. В данной полосе выделяются зоны систем разломов разрывного типа: около девяти-десяти систем.
Выделены зоны систем широтного простирания - черные линии - разломы разрывного характера, - УВ - выводящие.
Системы зон разломов СВ простирания (около пяти систем) - надвиги, - способствуют формированию структурных ловушек, - линии коричневого цвета.
Выделены зоны нарушений сдвигов (около пяти систем), - линии синего цвета.
Зоны систем тектонических нарушений опоясывают систему Земли.
Матрица объектов системы Земли. Геометризация. Основные четыре направления простирания тектонических структур.
Подвижные пояса. Тектонические нарушения и подвижные пояса.
Составил — В.Н. Устьянцев, 31.07. 2019.
Ю.С. Гешафт, А.Я. Састычовский подчеркивают: «… Мощные проявления магматизма на границе перми, триаса, юры и в мелу… ». Ревивация магмагенеза произошла и в пределах Западной Сибири. Очевидно, активизировались очаги магмы байкальского цикла магматектогенеза, под воздействием силы тяжести осадочной толщ.
Пересчеты магнитных аномалий, для высот менее 50 км, показывают, что четко выделяются две системы аномалий Северо-Западного простирания. Эстонско-Прикаспийско-Таджикская система аномалий, представлена преимущественно отрицательными аномалиями от 0 до 1 мэ, причем ось системы минимумов протягивается через Воронежский массив, Прикаспийскую низменность, низовье Сырдарьи, Ферганскую долину и Памир. Крупные положительные аномалии (+1 до +2 мэ) отмечаются в зоне Бельтаусского дробления, Букантау и небольшие в Голодной степи и Фарабском поднятии (+1 мэ). Северной границей системы является Каратау-Ферганский разлом, а Южной — Днепрово-Донецко-Мангышлакско-Приамударьинский.
К югу располагаются Балтийско — Черноморско - Закаспийская система, представленная четко видно и кулисообразно расположенными интенсивными положительными аномалиями (до 2-4 мэ). Ось системы максимумов (ΔТ) проходит через Красноводский полуостров и Копетдаг. Эндогенные энергетические потоки приводят к формированию зон с избыточной энергией.
Ряд особенностей глубинного строения выявлен А.А. Борисовым, путем пересчета аномального поля магнитных аномалий на различные высоты. Пересчетами для высот 100-200 км установлена аномальность субширотного характера: поля положительных аномалий прослеживаются вдоль параллелей 70, 56 и 42 градусов, а отрицательных вдоль параллелей 65 и 50 градусов. Узбой-Таримская зона — п-ль 420 — прослеживается до акватоииии Черного моря, и контроликует структуры Кавказа. .
В зоне сочленения эпипалеозойских, более древних плит, основной потенциал нефтегазоносности, связывается с основанием осадочного чехла, в области корового ослабленного горизонта. Основной потенциал нефтегазоносности, связывается с процессами, происходящими в литосфере и верхней мантии. [Академик, д. г-м. н. В.И. Попов].
Срединные массивы области плит и платформ - маркируют зоны генерации нефти и газа… Срединные массивы области подвижных поясов - маркируют зоны дегазации, в связи с тем, что они не перекрыты осадочным чехлом, в котором происходит локализация минерального сырья. Недооценена роль роль погребенных структур Байкальского цикла тектогенеза - СЗ простирание - рифей. В ту эпоху формировалась осадочная формация - серия "Блайна", в которой аккумулировалось минеральное сырье - Копет-Даг, С. Кавказ, З. Сибирь, Тиман.
Рифейские геосинклинальные образования отмечаются в полосе от Карпат (П. С. Семененко), через С. Кавказ (хасаутская свита) в Восточный Иран — альгонская серия мюрид; в резуьтате поздне байкальской фазы тектогенеза — галийский цикл, смяты в складки.
Другая геосинклинальная зона протягивается через Тиман и восточную часть Тургайского прогиба (Ю.Д. Смирнов) в Северный Тянь-Шань (В.Г. Королев). Основной цикл складчатости — байкальский (тиманский — Ю.Д. Смирнов, 1964).
Н.П. Хераскову (1963) - одно из существенных отличий от более молодых геосинклинальных систем — широкие окраинные прогибы байкалид.
Осадочные образования прогиба Гималаев и Байконура, имеют одинаковый формационный состав (серия Блайна, в которых происходит локализация УВ). Серия Блайна характерна и для Больше-Каратаусского, Чаткальского, Тимано-Нарынского прогибов. [57].
А.И. Суворов установил, что «разломы северо-восточного направления характеризуются надвигами, а северо-западные - сдвигами, которые сочленяются под прямым или тупым углами и образуют пары разломов (динамопары)». До рифея, более проявлены были меридионально-широтные направления (разрывной тип нарушений), затем в полной мере развились диагональные тектонопары [40, 41].
«Разрушение горных пород начинается там, где энергия обусловливает появление такого поля напряжения, потенциал которого выше прочности пород. Сопротивление горных пород на растяжение 6-15 раз меньше их сопротивления сжатия, то-есть, разрушение начинается в областях растяжений и сдвигов (разнонаправленное приложение пары сил)» [В.В. Богацкий, 1986] [3].
Парные разломы.
«Парными разломами принято называть пару субпараллельно расположенных линейных разломов (В.Е. Хаин, Е.Е. Милановский), между которыми располагается зона высокой степени подвижности и проницаемости, с своеобразной истории и сложного строения, которая отражает положение глубинного разлома» [1, 23].
Парные разломы более выражены в пределах развития срединных массивов, глубина их заложения достигает 10 км, далее они выполаживаются и переходят в глубинные.
Пересекаясь зоны разбивают кору на блоки. Подвижки по разломам приводят к деформациям, то-есть, эти зоны имеют тенденцию к разрастанию. Зоны имеют северо-западные и северо-восточные простирания и образуют сдвиго-надвиговые динамопары. Впервые в Средней Азии выделили отрезки парных разломов в Южном Карамазаре (Моголтау) - Курусай-Окуртауский и Северо-Моголтауский. Затем в 1989, были выделены еще девять парных разломов на всей территории Кураминского хребта [В.Н. Устьянцев, 1989] [14], и найдены их продолжения по всей Чаткало-Кураминской зоне. Парные разломы установлены в Карачатыре (Улутауский) и Букантау (Букантауский).
Парные разломы представляют собой шовные зоны между двумя положительными и отрицательными блоками. В парном разломе различаются главный оконтуривающий шовную зону разлом и второстепенный, возникающий немного позже и представляющий основную «оперяющую» структуру главного разлома. Главный разлом располагается ближе к отрицательной структуре, «оперяющий» - к положительной. Падение основных плоскостей разломов — под положительные структуры. Активно развиваться парные разломы стали с рифея, до этого времени наиболее проявлены были широтные и меридиональные направления (разрывной, тип нарушений).
Пересекаясь парные разломы разбивают Земную кору на "элементарные" блоки (12×12) км Кураминский массив) (Рис. 6). Генезис парных разломов связан с автоколебательной системой Земли и с вращением системы. Наиболее проявлены парные разломы становятся с рифея, когда произошло увеличение радиуса Земли и скорости ее вращения. Изменение параметрических характеристик системы произошло в связи с образованием гранитомето-морфического слоя. За счет постоянных блоковых движений, количество трещин в парных разломах, простирающихся параллельно основному сместителю увеличивается, что приводит к увеличению мощности этих разломов и степени их проницаемости [14].
Из всех типов разрывных нарушений. наиболее благоприятны для локализации месторождений являются парные разломы. Парные разломы выполаживаются на глубине 10 км и переходят в разломы глубокого заложения. То-есть, парные разломы контролируют зоны миграции и генерации УВ.
Парные разломы способствуют понижению давления давления, что приводит к процессу формирования месторождений минерального сырья различного типа и вида — Р менее 7 кбар, Т менее 5000 С.
Линеамент Северного Кавказа, по В. Елисееву, 2018, геометризация: В.Н. Устьянцев, 2019.
К линеаменту приурочены фрагментарно, магматические формации основного состава.
Просвечивающиеся структуры:
Линеаменты — самые крупные тектонические, глобальные структуры (архей-средний протерозой);
- линейные, очень протяженные, - тысячи км;
- мощность — до 10 км;
- располагаются с шагом от 50 до 100 км, сквозного характера нарушения, - флексурно-разрывного типа. Данные нарушения, более всего проявлены в кристаллическом фундаменте — архей-протерозой, (до смены плана деформации).
Линеаменты проявлены в кровле гранито-метаморфического слоя. Простирание — меридионально-широтное, — флексурно-разрывная тектонопара и диагональное — флексуро-сдвиго-надвиговая тектонопара (СВ — флексуро-надвиги; СЗ — флексуро-сдвиги).
Линеаменты хорошо выражены в кровле гранито-метаморфического слоя, часто являются флюидовыводящими структурами. Именно, в основном, с этими структурами связывается формирование глобального резервуара газонасыщенных пород основного состава, в подошве земной, который "блокируется" сверху энергетическим барьером. В эпохи деструкции земной коры, происходит приоткрывание разломов и подпитка резервуаров газом, области верхней тектоносферы, которая располагается выше энергетического барьера - глубины 0-12 км.
Линеаменты четырех основных направлений, прослеживаются по комплексу факторов:
— по прямолинейным участкам рельефа и геологическим контурам, древней и современной гидросети;
- по четким границам между ландшафтами, областями денудации и аккумуляции, возникновение которых определено эндогенными причинами. Они видны в виде светлых или темных полос (в зависимости от степени отражения, излучения, или поглощения породами) на телевизионных инфракрасных, радарных многоспектральных фотоматериалах [39].
Линеаменты иногда совпадают с простиранием глубинных разломов.
В местах пересечения линеаментами руных зон, в последних отмечается повышенные концентрации полезного компонента.
Так, по северо-восточному простиранию зон линеаментов (надвиги), отмечаются изометричные магнитные максимумы. В зоне линеамента, аномалии силы тяжести, представляют собой системы небольших, продолжающих друг друга гравитационных ступеней, ограничивающих по размерам аномалии обоих знаков. В некоторых случаях отмечается разворот изоаномал, (по материалам Н.А. Фузайлова, 1976) [23], а с ними и локальных аномалий в северо-восточном направлении [23].
Изометричные магнитные максимумы свидетельствуют о поттоке по зоне линеамента газонасыщенной магмы основного состава, из области подошвы земной коры. С узлом пересечения линеаментов широтного и северо-восточного простирания, связывается генезис золоторудного, гигантского месторождения Мурунтау и гигантского месторождения метана, — Газли. Линеаменты, ответственны за процесс формирования гранито-метаморфического слоя, с которым генетически и парагенетически, связывается формирование крупных месторождений УВ.
О зонах Беньофа.
Сейсмологическая информация, особенно с тех пор, как сейсмологи научились определять направление смещения очагов землетрясений, заняла вообще очень важное место в арсенале средств изучения современных тектонических движений и деформаций. Именно сейсмологам мы обязаны открытием сверхглубинных наклонных разломов по периферии впадин океанов (получивших в мировой литературе зон Беньофа), хотя первым геологом, открывшим их значение, был А.Н. Заварицкий.
Сейсмологи же установили поддвиговый характер перемещений по этим разломам. В свою очередь вулканологи отметили закономерную связь с зонами Беньофа, андезитового вулканизма и столь же закономерное изменение состава магматических продуктов в направление снижения содержания кремнекислоты и щелочей, и увеличение отношения окислов калия к окислам натрия по мере удаления от выхода этих зон на поверхность.
Большое значение имело также, обнаружение приуроченности к вероятным древним аналогам зон Беньофа парных поясов метаморфизма, – высокой температуры и низкого или умеренного давления в висячем боку, и низкой температуры, и высокого давления (глаукофан-главсолитовая фация), - в лежачем боку, (по данным японского петролога А. Миясиро).
С древними зонами Беньофа оказываются связанными выходы офиолитов, особенно серпентинового меланжа.
Принципиально новая информация привела к коренному пересмотру ряда положений учения о геосинклиналях. Было опровергнуто представление о мелководности геосинклинальных бассейнов и характерных для них формаций (например – флишевой. Особенно плодотворно оказалось сравнение с разрезом океанической коры, составленным по результатам драгирования и сейсморазведки (теперь первый и отчасти второй слой океанической коры, изученной также бурением).
Это сравнение дало также возможность обосновать представление о заложении геосинклиналей на коре океанического типа и последовательным преобразованием этой коры в континентальную в ходе их эволюции.
Дополнительное обоснование получило сопоставление геоантиклиналей, возникающих на зрелой стадии геосинклинального процесса, с островными дугами, при этом определилось ведущая роль в этом процессе зон Вадати-Заворицкого-Беньофа [1,7,23].
Краевые разломы. На огромное значение краевых разломов в истории развития земной коры было указано В.А. Обручевым и В.И. Поповым (1938). В.И. Попов краевые разломы назвал «дискорданными линиями», и считал, что это – крупные разломы сингенетичные с образованием осадков, которые разделяют области согласного и несогласного накопления отложений (обычно разделяющихся в обеих областях по мощности и по фациальному составу). Это позволяет обойтись без предположения о тектоническом сближении фаций, маловероятным при выдержанном крутом падении разграничивающих их разломов. Он также отметил краевое положение разломов по отношению к простиранию основных структур [7,1,23].
А.В. Пейве (1945) относит эти разломы к глубинным. М.М. Кухтиков (1968) отмечал, что в направлении простирания зон межзональные разломы непрерывно прослеживаются на многие десятки и сотни километров, т.е. на те же расстояния, что и тектонические зоны складчатой области. Анализ краевых разломов показал, что это - группа нарушений, продольная (согласная) по отношению к простиранию геоантиклинальных складчатых сооружений - зон повышенной деформации земной коры, она тесно связана с их развитием. В то же время краевые разломы составлены из отдельных отрезков региональных разломов различных простираний. Общая черта краевых разломов – граничные дизъюнктивные дислокации, разделяющие различные по знаку структурные формы, своеобразные границы смены мощностей и типов осадков характерных рудопроявлений и магматизма. Эта система крутопадающих разломов, сопровождаемых зонами дробления, рассланцивания, повышенного метаморфизма, часто сопровождается поясами различного типа оруденений. Краевые разломы ограничивают древние платформы и активизированные их выступы от геосинклинальных поясов: Донбассо-Уральского, Донбассо-Южно-Тяньшаньского и Среднеазиатского [О.М. Борисов] [1, 23].
Историко-геологические данные позволяют проследить миграцию зон Заварицкого-Беньофа и континентальных краевых разломов с запада на восток. Так, по мере миграции в пространстве структурно-фациальной единицы, происходит и перемещение зоны краевого разлома. Краевой разлом рифейской, каледонской и герцинской геосинклинали Урала мигрировал с запада на восток. Структурная линия Николаева в каледонский цикл отделяла каледонскую область от располагающейся к югу Русско-Китайской платформы, в герцинский цикл эта линия уже располагалась внутри Урало-Мангольского складчатого пояса, разделяя каледониды от герцинид. В Японии, где была впервые установлена характерная для зон Беньофа метаморфическая зональность, предполагаемые древние зоны Беньофа параллельны современной тектоно-метаморфической зоне, историко-геологические данные позволяют проследить миграцию этих зон в сторону океана, на восток.
Общекоровые сбросы.
Общекоровые сбросы представляют тип глубинных разломов, которые сопровождают растяжения земной коры. Соседние участки последней раздвигаются и между ними возникает наклонные нормальные сбросы. Смещения по ним компенсируют растяжение. На поверхности при этом образуется не один, а система сбросов. В сумме своей перемещения по ним ведут к образованию сложных грабенов, разделенных внутри на многочисленные грабены и горсты второго и следующих порядков. Такие сложные грабены большой протяженности, измеряемые многими сотнями и тысячами километров с большой амплитудой вертикальных смещений, достигающих нескольких километров принято называть рифтоподобными структурами [2].
Отметим, что все блоки, такие как Памиро-Тяньшаньский, Алтайский, Саяны, находятся в зоне влияния глубинного Трансконтинентального Азиатско-Монголо-Охотского разлома, который является коллектором, выводящим вещество в верхние мантийные сферы. В результате чего, формируются структурные элементы автоколебательной системы Земли, которые в конечном счете, образуют структурные объекты, располагающиеся в геологическом пространстве системы Земли закономерно