Энергия образования миерального сырья
В 1979 году С.И. Ибадуллаев и К.К. Карабаев в своей работе- «Об эволюции магматического процесса в Средней Азии», на основании фактического материала (геологическая карта Средней Азии (1976), показали эволюционную этапность магматизма в разные периоды (от протерозоя до неогена включительно) развития земной коры, и пришли к выводу, что «все известные в Средней Азии интрузивные и вулканические комплексы являются дериватами магматических процессов, проявившихся двадцать восемь раз (от протерозоя до неогена). Они представлены семнадцатью комплексами пород различного состава, генезиса и времени становления. Дифференциация магматических образований происходила в направлении: щелочные - кислые - основные - ультраосновные породы.
Частота проявления магматических комплексов варьирует от 1 до 16. Так, граниты лейкократовые, биотитовые и двуслюдяные, гранодиоты, гранито-гнейсы внедрялись 16 раз (архей-неоген); габбро, нориты, габбро-диориты, диориты - 14 раз; породы комплекса гранодиориты, кварцевые диориты, гранито-гнейсы и гранито-диорито-гнейсы - 13 раз; диориты, габбро-диориты, кварцевые диориты, кварцевые сиенито-диориты - 11 раз; дуниты, передотиты, гарцбургиты серпентинизированные - 5 раз (в кембрии, ордовике, девоне и карбоне); комплекс пород - перидотиты, пироксениты, габбро, габбро-нориты - 1раз (мел). Комплекс габбро, габбро-норитов, который соответствует "базальтам" внедрялся 14 раз (от архея до неогена включительно).
Высокой частотой внедрения отличаются комплексы пород кислого и основного состава, меньшей - серии щелочных и ультраосновных пород.
В каждом отдельно взятом периоде дифференциация осуществлялась в сторону изменения состава магмы от кислого до основного».
«Высокая магмапродуктивность, как отмечают Р. Уайт и Д. Маккензи (1995), не может быть обеспечена плавлением на уровне литосферы, а требует привнесения материала из более глубоких горизонтов мантии.
О.А. Богатиков (1985) отмечал, что «надо учитывать то обстоятельство, что более легкоплавкое вещество лейкосомы будет легче перемещаться при высокотемпературном (особенно водном) амфиболитовом метаморфизме, создавая тем самым впечатление большей древности меланосомы».
Состав слоев :
1. гранулиты — 40-50%, мигматиты и гнейсы — 20-30%, кристаллические сланцы — 10-20%, плагиоклазиты и гранитоиды — 10-15%;
2. плагиоклазиты и габбро-нориты — 50-60%, гранулиты и гнейсы — 20-30%, гранулитовые эклогиты — 10-20%;
3. серпентиниты — 20-40%, эклогитизированные породы и эклогиты — 60-80%;
4. гарцбургиты и эклогиты — до 80%, пироксениты и лерцолиты — до 15%, вебстериты и габбро — 5%;
5. аморфизованная слабо дифференциированая базальтово-пикритовая ассоциация.
«Все меняется (в геологическом масштабе времени) и меняется не хаотически, а сохраняя некоторую направленность. Постепенно вещество земной коры все более и более дифференцируется. Идет не усреднение, а пространственное разделение элементов, минералов, горных пород» (В.И. Вернадский, 1920)..
«Газы стратосферы, находящиеся наверху, очень независимы от движения вещества на земной поверхности, и хотя существует обмен между веществом этих высоких областей, веществом стратосферы и поверхности земли, этот обмен совершается крайне медленно. Несомненно, в течение геологического времени, он не будет незаметной величиной. В тропосфере количественно чувствуются отголоски геохимических обратимых процессов» (В.И. Вернадский, 1934).
Этот вывод , справедлив и для других планет Солнечной системы.
Из области ядра, исходит волна энергии, под воздействием которой вещество и его структура, подвергаются преобразованию на атомарном уровне.
Теорема доказанная И. Р. Пригожиным (1947), термодинамики неравновесных процессов:
«при внешних условиях, препятствующих достижению системой равновесного состояния, стационарное состояние системы соответствует минимальному производству энтропия»
Синергетика объясняет процесс самоорганизации в сложных системах следующим образом: Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции. Самоорганизация неразрывно связана с волновыми процессами. В любых открытых, диссипативных и нелинейных системах неизбежно возникают автоколебательные процессы, поддерживаемые внешними источниками энергии, в результате которых протекает самоорганизация.
Процесс формирования месторождений минерального сырья, - антиэнтропийный. Система формирования минерального сырья— открытая, благодаря наличию тектонических нарушений в земной коре. Таким образом, главным фактором формирования месторождений являются, - тектонические нарушения. То-есть, тектонические нарушения контролируют месторождения минерального сырья.
Е = mc2
где, E - энергия системы, m - её масса, c-скорость света.
Энергия: (Е), единицы измерения, система СИ-(Дж), система СГС — (эрг).
E=mc2 — формула А. Эйнштейна, указывает на эквивалентность массы вещество и энергии. То-есть изначально энергия большого взрыва порождает вещество, которое в планетарных стационарных центрах подвергается распаду на атомарном уровне (ядерные реакции, энергию дает гелий). Хондрит: — СО, СО2 - метан - кремневодород, кремнеуглеводород — нефть+метан — водород — гелий.
Вещественный состав минерального сырья на планетах, зависит от элементов не подвергшихся распаду.
Планеты-гиганты и планеты земной группы своим плотностным характеристикам резко различны, - это есть яркое проявление процесса дифференциации вещества.
С - углистые хондриты содержат много железа, которое почти всё находится в соединениях силикатов. Благодаря магнетиту (Fe3O4), графиту саже и некоторым «органическим» соединениям углистые хондриты приобретают тёмную окраску. также содержат значительное количеств гидросиликатов (серпентин, хлорит, монтморилонит). Гидросиликаты в составе хондритов существенно влияют на их плотность.
В Солнечной планетарной системе отмечается закономерность: с удалением от Солнца, уменьшается количество тяжелых элементов, а количество легких элементов (водород, гелий, углеводород, вода и др.), увеличивается.
- Пребиотические вещества, которые образуются при облучении льда, теряют свои органические свойства и высокое содержание водорода, азота и кислорода, при нагревании более чем до 300 ºC; это происходит вблизи Солнца.
- Слишком низкие температуры предотвращают пребиотическое направление развития, в отличие от Земли.
«… Лишь часть вещества организмов собирается в виде каустобиолитов. Это только та часть которая выходит из жизненного круговорота, какая-нибудь миллионная часть химических элементов, проходящих через живое вещество.
Вся основная масса элементов удерживается живым веществом в круговороте, в поле своего действия…»
«Циклические элементы составляют почти всю массу земной коры — 99.7;%. Остающийся небольшой остаток — 0.3%, не есть ничтожная величина.
«Нахождение элементов в кремнеалюминиевых массах — сложных, вечно изменчивых системах, более или мене вязких, обладающих высокой температурой и высоким давлением переполненных газами (CH4, H2O - пары)» [В.И. Вернадский, 1934]
Благородные газы образуются в земной коре и мантии, в процессе радиоактивного распада определенных элементов, таких как уран и торий. Эти радиоактивные элементы подвергаются ядерному распаду, испуская альфа- и бета-частицы, а также гамма-излучение. В рамках этого процесса распада,образуются изотопы благородны газов, которые дают энергию, которая способствует дифференциации вмещающего вещества. Энергетическая подпитка системы способствует процессу минералообразования. УВ в том или ином количестве образуются из всех видов пород, под вод воздействием волны энергии исходящей от экзоэнергетических элементов.
Все без исключения планеты Солнечной системы, отражают механизм формирования сложной системы углеводородов и однозначно указывают на их абиогенное происхождение.
Благородные газы и их роль в развитии планетарной системы.
Отметим: «Открытие удалось сделать благодаря уникальному прибору – магнитному резонансному массспектрометру – разработанному и созданному в Ленинградском Физико-техническом институте имени А. Ф. Иоффе (он оказался в десятки тысяч раз чувствительнее лучших зарубежных спектрометров). Разработкой приборов и исследованиями по изотопии гелия руководил доктор физико-математических наук, профессор Мамырин Борис Александрович. В практической геологии изотопно-гелиевый критерий позволяет картировать рудоносные зоны (уран, литий, УВ, нефть и др.), отличать зоны действующих разломов земной коры, оценивать обстановку в сейсмически неустойчивых районах.». (Б. А. Мамырин, Г. С. Ануфриев, Л. В. Хабарин, И. Н. Толстихин, И. Л. Каменский, 1982).
- Российские ученые установили, что гелии, которыми «пропитаны» породы земной коры и породы мантии, резко отличны по изотопному составу.
В коре, в различных регионах отношение гелия3 к гелию4 может меняться в десятки и сотни раз и это отношение крайне мало.
А в гелии мантии отношение легкого изотопа к тяжелому оказалось очень стабильным и в тысячу раз больше, чем в гелии земной коры.
Это редчайший феномен природы, поскольку сдвиги в изотопном отношении для различных элементов на Земле не превышают обычно нескольких процентов. В результате изотопных анализов гелия из разнообразных природных объектов был обнаружен, первоначально в газах термальных источников Южно-Курильских островов, гелий с аномально высоким изотопным отношением Не3/Не4 = ~ (3±1) 105.
Дальнейшие исследования и анализ проб, отобранных из многих точек земного шара во всех океанах, на всех материках, на многочисленных островах, показали, что установленный факт носит глобальный характер, и в гелии, продуцируемом подкоровыми слоями Земли, отношение Не3/Не4 выше в сотни и тысячи раз, чем в гелии, генерируемом породами земной коры.
Впервые зафиксированы нейтрино вторичного термоядерного цикла Солнца. Ученые из международной коллаборации Borexino объявили о первом наблюдении нейтрино из реакций углеродно-азотного цикла в Солнце. Это экспериментально подтверждает теоретические представления о вторичном цикле термоядерного синтеза в массивных звездах. Результаты исследования опубликованы в журнале Nature. Звезды питаются энергией термоядерных реакций превращения водорода в гелий, происходящих в их недрах. Такой синтез возможен двумя путями: в протон-протонной (pp) цепи, включающей только изотопы водорода и гелия, и в ходе вторичного цикла, который еще называют углеродно-азотным, или CNO-циклом по символам углерода, азота и кислорода — элементов, выступающих катализаторами реакций. Ядерные реакции как первичного, так и вторичного цикла сопровождается испусканием характерных нейтрино. Протон-протонные цепи производят около 99 процентов энергии Солнца и сходных с ним по размерам звезд, поэтому ранее ученым удавалось наблюдать только нейтрино из рр-цикла. Но считается, что у тяжелых звезд, с массой в полтора раза и более массивнее Солнца, преобладает углеродно-азотный цикл, и важно было экспериментально доказать его существование. Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию о ядерных процессах в глубинах звезды и условиях их протекания. Зафиксировать среди солнечных нейтрино те, которые относятся к вторичному циклу было очень сложной задачей, так как их сигнал не намного превышал фоновый. Но ученым коллаборации Borexino это удалось. "До недавнего времени оставался открытым вопрос, удастся ли зарегистрировать нейтрино из CNO-цикла. Регистрацию CNO-нейтрино, помимо малости самого потока, осложняет присутствие спектральной компоненты природного фона, неотличимой от их спектра", — приводятся в пресс-релизе Оъединенного института ядерных исследований в Дубне слова одного из участников эксперимента, старшего научного сотрудника Лаборатории ядерных проблем им. В.П. Джелепова ОИЯИ Олега Смирнова. Свойство беспрепятственно проникать сквозь вещество позволяет нейтрино сохранять информацию о внутренних процессах в Солнце, но это же свойство делает их неуловимыми для обычных детекторов частиц. Поэтому для регистрации нейтрино используют специальные детекторы очень большой массы с тщательным контролем всех процессов, которые могут отражать взаимодействия нейтрино с электронами. В тех редких случаях, когда нейтрино взаимодействует с электроном, он передает ему часть своей энергии. Этот процесс напоминает упругое столкновение бильярдных шаров. Электрон, получив некоторую начальную скорость, постепенно теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов. Таким образом, взаимодействие нейтрино с электроном приводит к вспышке света, и несколько тысяч фотонов разлетаются от точки взаимодействия во все стороны. Эти фотоны регистрируют тысячи детекторов света, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, а также определить точку, где произошло взаимодействие. В сверхчувствительном детекторе Borexino, расположенном в самой большой подземной лаборатории в мире в Гран-Сассо в Центральной Италии, в качестве активной среды для регистрации нейтрино используется около 100 тонн жидкого сцинтиллятора. "Несмотря на огромное количество солнечных нейтрино, проходящих через детектор (более секстиллиона за день) только полсотни нейтрино оставляют заметный "след" в детекторе за это же время. Ученые, работающие над анализом данных, смогли выделить сигнал, который можно объяснить только присутствием нейтрино из CNO-цикла. Таким образом доказано протекание ядерных реакций CNO-цикла в Солнце. Полный поток нейтрино из CNO-цикла составляет около одного процента от полного потока солнечных нейтрино", — поясняет Олег Смирнов. Открытие имеет первостепенное значение для астрофизики, так как в звездах более массивных, чем Солнце, энергия выделяется в основном за счет углеродно-азотного цикла. Его механизм теперь экспериментально подтвержден. Ядро Солнца — гигантский термоядерный реактор. В процессе ядерных трансформаций при температуре около 15 миллионов градусов протоны сливаются друг с другом и образуют гелий. Гелий нарабатывается в двух многостадийных процессах: в протон-протонной (pp) цепочке и в углеродно-азотном (CNO) цикле. Часть ядерных реакций сопровождается испусканием нейтрино. Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию как о ядерных процессах в глубинах Солнца, так и об условиях их протекания. Хотя поток солнечных нейтрино огромен и исчисляется миллиардами частиц на квадратный сантиметр в секунду, регистрация неуловимых нейтрино представляет собой чрезвычайно сложную экспериментальную задачу». Доказательство прохождения реакций углеродно-азотного цикла в Солнце является важным научным достижением, шагом на пути к разрешению загадки его химического состава. Поскольку поток нейтрино, генерируемый в CNO-цикл, напрямую связан с концентрацией элементов C, N и O, участвующих в реакциях, то измерение потоков этих нейтрино напрямую связано с химическим составом Солнца.