In

:

)

»

: 25.00.03 -

-

(

*

-2009

						2
1.						
	1.1.					
	1.1.1.	, «		»		23
	112	"	, »			24 24
	113	"	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	»»		26
	11.1.5.	~	,	·····		
	12				•••••••	30
	121					30
	1.2.1.		•••••	••••••		33
	1.2.2.				•••••••	
	131					
	1.3.1.					+1 17
	1.3.2.					/+4/ /0
	1.3.3.				3	49 57
	1.4.			2	5	
	1.4.1.			2		
	1.4.2.			3		04 71
	1.4.2.1.			••••		
	1.4.2.2.					
	1.4.2.3.					80
	1.4.3.			••••••		
	1.4.3.1.					
	1.4.4.			••••••		
	1.4.4.1.			•••••		
	1.4.4.2.					
	1.4.4.3.		,			
	1.4.4.4.					
	1.4.4.5.			•••		
	1.5.			•••		
	1.5.1.			••••••		
	1.5.2.		-	-		
	1.5.2.1.			•••••		
	1.5.2.2.		()	
	1.5.2.3.		11 ()	
	1.5.3.					
	1.5.3.1.			()	
	1.5.3.2.					
	1.5.3.3.					
	1.5.4.					
	1.5.5.					
2.						
	2.1.	,	•••••	••••••		
	2.2.					
3.		-				
	3.1.					
	3.1.1.					
	3.1.2.					
	3.2.	-				
	3.2.1.		:			
	3.2.2					134

~

-

3.2.3.

3.3.

- 2 -

3.3.1.) (3.4. 3.4.1. 3.4.2. 3.5. (3.5.1. 3.5.2. 3.5.2.1. 3.5.2.2. 3.6. 3.6.1. 3.6.2. 3.6.3. 4. 4.1. 4.1.1. 4.1.2. 4.1.3. 4.1.4. (4.1.5. 4.2. 4.2.1. 2 3 4.2.1.1. 4.2.1.2. 4.3. (4.3.1. (4.3.1.1. 2 4.3.1.2. 4.3.1.3. 4.3.1.4. 4.3.1.5. 4.3.1.6. 4.3.1.7. 4.3.2. (4.3.2.1. 3 4.3.2.2. 4.3.2.3. 4.3.3. 4.3.3.1. 4.3.3.2. 4.3.3.3. 4.3.3.3.1. 4.3.3.3.2 4.3.3.3.3. 4.3.3.3.4. 4.3.4. (4.3.4.1. 4.3.4.1.1. 4.3.4.1.2. 4.3.4.2. 4.3.4.3. 4.3.4.4. 4.4. 4.4.1. 5. 5.1. 5.1.1.

- 3 -

	5.1.1.1.			
	510			
	J.1.2.			
	5.1.2.1.			
	5.1.2.2			
6	01112121			
0.	-			
	()	
	6.1.	-		
				261
	(11			201
	6.1.1.	-	,	
	6.1.2.			-
		()	266
	612	(,	(
	0.1.5.	、 、		(, -
	,)		
	6.1.4.		()	-()
		-()	274
	615	(/	275
	0.1.3.			
	6.1.6.			
	6.1.7.			
	618			279
	0.1.0.			
	0.2.			
	6.2.1.			
	6.2.1.1.			
	6212			285
	0.2.1.2.			
	6.2.2.			
	6.3.			
7				293
<i>.</i>	71) 202
	/.1.		(AICOIS)
	7.1.1.			
	7.1.2.			
	7121	_		295
	7.1.2.1.			200
	7.1.2.2.	-		
	7.1.2.3.			
	7.1.2.4.			
	7125	_		302
	7106			2015 2015
	/.1.2.0.	-		
	7.1.2.7.	,		
	7.2.			
	721			308
	7.2.1.			
	1.3.			-
	7.3.1.			313
	74			316
	7 7.4.1			
	/.4.1.			
	7.4.2.			
	7.4.3.			
				220
				321

.1.1. 3 (). .1.2. 3 « **»** (), –) (.1.3. 10 (;2-:1-, 1977) 10; 3 – ;, 5 – :4) .1.4. 3, (. . ,). . . •• .1.5. [109 3D : 1-;2-()); (.1.6. () : $_1(x,y) > _2(z) > _3(y,x),$ (3 2-1 (_{min}); ₂-8 ((_{avr})). (_{max}); ₃-.1.7.) 45-.1.8. ()) (.1.9. (2000) (); – (()) .1.10. (, 2005). Tak Fault System F6bot (: -Pcm (); -) (F6bot), Tak Fault.). .1.11. (.1.12. dg6 (); -« »; « ». : , 2007. , . .1.13. . . », - « - '() () ~ **»**

.1.14. : (Palermo Aike Formation); -.1.15. : • .1.16. Fort Worth Basin: .1.17. () .1.18. .1.19. (2 (,):) -~ » 1903113 .1.20. 1 (2 (,) 3 (, (,))) (,), (,) (,). 1¹ (.1.21.) , 2006): -((); 270°) .1.22. , 2006): -((1); -; (); -() (); ı); (_ _ () , 2006). .1.23. () (: .1.24. Dip Map, 270°.). (.1.25. 270°.). Dip Map, (.1.26. : .1.27. .1.26). (: (») ~ .1.28. _ ; .1.29. , 2004): -(1^{1} (); (). .1.30. : « » .177R) (: ~ >> (230R) 2-1 14 2-1 14 .1.31. • ;) :) ;) _

- 6 -

			;)		-
.1.32. (.1.33.	- 8)	(: –	2002 (21, 23)	8, 21, 23). (),	-
; -« (.1.34.	»: «	» «	». (2005) «	, »,	- , -). -
.1.35. (); –	; - (-6 , (- 1).	-) -
.1.36.)		-	. ,		(-
.1.37. 196	- ().			.22, 2005 ,
(,()	(50°) -?) ,()	3.,())	()	- 3
.1.38. : – .1.39.), (), (:	; –). ,	((). (-), (- 1-)
.1.39.), (-3), (2-). :	· , ,	(), (1-) ,
. 1.40. . 1.41. (y = 98,79 x0,86; F : y = 11	(S1-S5 – ; 1- 5 – ; y = 125,58 x0 22 = 0,91; 5,64 x0,9; R2 = 0,91	-3 (), ,81; R2 = 0,87; ; y = 84,88 x1,02; R 1).	() y = 93,60 x(0,0) 2 = 0,92;	(() ; -).),99; R2 = 0,90; - : y = 98,7	, 2008). ; - () - : 6 x0,9; R2 = 0,86;
1.42. ;) ((-)) . (()).):)

 $_{1}^{1} -$.1.43. _) :) ;) ((). .1.44. _ 12 :) ;)) (() .1.45. 1 –) :) (;)) .1.46. 1, Q. 8, . 1.47. - $^{1}_{1}$ Mz Kz 8, , $1 \\ 1$.1.48. : ($_{1}$, S_{2} , Q().), , 4, 5, .1.49. (3). (-)). 16_2-(14_2-1 () $(-S_2) - 0,78;$ (R) $_{12}^{2})-0,97;$ $_{12}^{2}$ -)--0,70. (-(1.50. : +250()-250) 245-.1.51. () • (.1.52. (Hoggar Massif) () .2.1. () () . 2.2. () (). . 1 – , 2 3 – , 4, 5 – () (,),6-(,),7-(). .2.3.), (() () ()), .3.1. (), () : -1 -(). .3.2. ()) .((1-). .3.3. () (), (-). (- ,) ([, 1987]): , -([Sylvester, 1988]): . :1-(R1) (R2) , 2 , 3 – (), 4 – , 5 – ([Sylvester, 1988]: ([Sylvester, 1988]: « » [Strike-slip..., (1985]): :1-, 2 – , 3 – ,4–

- 8 -

,6-, 5 – : : : »(): 1 – ,2-.3.4. Sylvester, Smith (1976); Gamond and « **»** Odonne (1983), Naylor & others (1986), A.Sylvester (1988), K.Kwolek (2004): 1 -« », (A.Sylvester, 1988); 2 -« », (A.Sylvester, 1988); 3 -(K.Kwolek, 2004);4 -« », (Naylor and others, 1986);5 -.3.5. (1-1 2-2), _ . 4-4). (3-3), (.3.6. (Positive Palm Tree - Transpression) (Negative Tulip Structure- Transpression) « ». .3.7. (1-1) • 2-2), 3-3 4-4). ((.3.8. _ 1-1), ((2-2) 3-3). (.3.9. (»). ~ () (). (l_i) : (*L*). = 1,28. .3.10. () () . .3.11. 90°. .3.12. .3.13.) (.3.14. , 2003); ((): -(. , , 2004); – , 2008), (; -.3.15.). (.3.16. (,) (,) (,) (,) , [28]. .3.17. (). [28]; , (). « **»** .3.18. ()

- 9 -

), ((). _ .3.19. ().), (.3.20. (), ». « .3.21. () () (4-6-). (8, 1, 1, 1). 4 : () (): 2, .3.22.)) (.3.23. **»** « 1. .3.24. () « **»** 4200 , Inline=1494. 1/3 -2800 (), (), 10% (~400), 4 « » ()). (.3.25.)« (» Inline=1700 () – : () . 3.26. 1-1 . 3.27. 2-2 3-3 . 3.28. . 3.29. 4-4. .3.30. 1-1 2-2 (3-3) (4-4). : _{zN}; 3 -(1:1). .3.32.) : (4-) .4.1. [

, 1954, 1975].

- 10 -

.4.2. k, i _ (1 – , 1961, 1969].)[.4.3. , 1961]: 1, 2, 3 – ,4-[; ; OB – MON -; PP₁ – ;OC-.4.4. [1972, 1992]: -; . . ; 1 -; 2 – ; 3 – ;4-; 5, 6 -.4.5. .4.6. -.4.7. (). .4.8. ~ » :1-,2-,3-~ » « >> .4.9. ĸ **»** () ()) ((» ~). .4.10. [Hung, Angelier, 1987]: , b-.4.11. () () 2 (,2005) . 4.12. F6() (), 3. .4.13. Tak Fault , 2005) 3 ((,). F6(,) .4.14. () FMI() (). .4.15. 3 : – TAK (); - GARRA TASSELIT (). .4.16. () (-) 3 () 2) (340° () (). 3 (2007 .). .4.17.); – : -(5°, 58662. : 1. 90-95° (270-275°); 2. 355-360° (175-180°); 3. 315-320° (135-140°); 4. 305-310° (125-130°); 5. 55-60° (235-240°); 6. 30-35° (210-215°). .4.18. : --2006 -2007; --2006; --2006 -2007.), (2000 -2006 -), -2007 (2005) -(14307 (58662). 10°.

.4.19. () (¹₁, ,3-₁). :1+2-,4-12, 5, . .4.20. () ; .4.21. . () (). 20° 40°) (() .4.22. .4.23. 1 .4.24. 1 .4.25. .4.26. 1 .4.27. 1 .4.28. 1, . .4.29. , -.4.30. 1(:), (), () (); -(((),),) : (()), () .4.31.) (min max) (); (; _) (min max) .4.32. : . , 2006). (.4.33. : -3500-4800 ; -2000-3500 ; -2000-4800 3. .4.34. 3-(). (-) .4.35. : --); – ; ____ .4.36. .4.37. .4.38. 300-340° 20-50°) (: 8-45° (45°; (0°; 135°) () 90°) .4.39. [9] -(n) :1-); [38]- -,2-(,3--, 5 – ,4-(. .); [50] -,

 $\max_{1} (2,3)$ _{1 3}. (4,5)

.5.1. -() () 0,91 1,0 230. .5.2. () _ () (). 0,99. 0,98. .6.1. -:1-(),2-.6.2. (),3-(). ()) (.6.3. .6.4. .6.5. ()) – (() . () .6.6. .6.7.) (. .6.8.). (; _ ,);2) :1) (); (3) (). : .7.1.):1 – (;2-;3 – .7.2. (1) (**Q, %**)(2) $H_{N2}^{(1)}$ () ((**Q,%**) 2 -. (Q, %) 2 -; $lgQ_{n\!+\!1}\!=\!a+b\!\times\!lgQ_n\!)\!.$), (.7.3. -) [7].) ((.7.4. () [52, 156]. .7.5.) () (.7.6.

()

- 13 -

1.1.	-						-
. 1.2.	-						
1.3.		·	(),		()	()	-
1.4.	-			- (Mz)	· · · · · · · · · · · · · · · · · · ·		-
1.5.	-	11			(KZ)	11	-
1.6.	-	11			(132)		-
1.7.		-					
1.8.	•		-				
3.1.				-			-
4.1.	-		•				-
4.2.							
4.3. 7.1.	-		•			•	-
7.2.		-			·		-
					•		

(194	5) «	», -
«	, »	
(),	, () .
,		
	,	
), , 1964; , 1977; - (, 1999 (, 1963))	() (, , , , , , 1960; .); , , , (- , (- , 1988; , , 2005; , 2007; , 1991 .), , 1963 .) 2004 .), (, , , 2004 .) -
, (,,	, 1990 .), (, 2004 (J.Wilson, 1970),	4;, 1990 .). -
2005; , 2004; ,	(, , 2004 .). GPS-	, , - -
, , , , , , , , , , , , , , , , , , ,	2003, 2005)	- , 2003 .).
() ()
	« »	- , - _
,	, - ,	(), - -
	_	-
		() -
· , ,		(1963) . A.Sylvester (1988)
	,	·

,

-

,

, (. . , 2004). , (. . , 2005, 2007; . . ,2004; . . , 1999; 2007; . . , 2007 .) (pull apart), ., 2005). (. . «pull apart», , ,2004; (. . ., 2005). . . , . . , 2004; (. . , 1999;, 2005; 2004; .), (..., 2007), ,1987; . . () 2004; . . , 2006; () _ ,1994; . . , 2007 .). (. . : 1)); 2)) (() (1)) (()) (-() , 1992). , 3- () 1- (), 2- () -3 (3),

- 17 -

,

« » 2003

(

2004-2006 . .

_

),

- 18 -

,

•

•

	()	,			
						-
						•
						-
	,					:
•••	, • •	,	,	, ,	,	,
• •	,	,	. ,	,	,	,
• •	,	,	, ,	••• • • • •	,	,
• •	• •					
						-
	:	,	,	,	,	,

, , , - -

.

$$(\dots, \dots, \dots, \dots);$$

· · · , · , ·

- 23 -

¹ « »[213],

- 27 -

; , 2- , 3-) 4-;) ()), (() ()), (_ () ()), (()), (, (((2500-3000) . 5000 . 2500-3000 .) (350-400 500-. 600 1000 . 3-(-). 1000 , 2,5 (2500). . 400) (2500). 7 (-3000 . () () 1400 .

- 29 -

(

)

:

- 30 -

1)

A.Sylvester [248]

(). Naylor and others [241], A.Sylvester [248],

,

,

- 31 -

3-_

»

~

_

»

3.

() –), (((),), (). _ () 3 () ()),). (3-() ((« [119, 120]), **»** () [119, 120]). (2-[189-170], -2 , (). 3, [192]. 5) (() () (() (),))) (

- (-

),

),2- () 1- () .

1.2.2.

, _ _ _ _ _

-. ,

> (), ,

- 33 -

				,	
	[92,80],				-
					·
«	»		,	,	
,	,		,		
	,				-
,		, (, 1987), [32];		·
_	2004) [211].		()		
(, 2004), [211];	,		(), [110];
_			(,	, 2004), [103];
				(, ,
_	,	2001) [107]			
(,	, 2001), [197];	;		-
(., 2005), [202];	,		
_		(., 2007), [1 – VAMP (Se	108]; choll Hart 1993	3) [24]·
_				((C.Story, at al., 2000;
· · _	, ,	· ·	., 2007), [26, 24];	» (2003) [24].
_	~	,		"(•••	(,
«chimneys»,	«plumes»,	([16];	21.	
_		(, 2004), [4];	,	
—		, «	»	(, 1998), [75];
_		(, 2004), [93]; (,	,	, 2007), [22];
					-
(, 1984);		(,	, 2001); -
	(., 2006); 1087)	((., 2006);
((· · · , , 2002)	;	(, 2000) (, 2006); -
« 2004)•	»	$\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$, 2007); «	»	(
., 2004);		(, 2007) ,	(,2007) .
C	, Welham Craig 107	() 9. Jul Sano ∆	, kiko Urabe Hiroshi V	Vakita et al 10	-
([143]	>, sui suio, M		, ania et.a., 1)	, ,
				,	
				7	

,

-

•

_

,

, 1994; . . , 2004) (. . . . [1,2,3]. [122] [15], , . ~) **»** ()) [32] [211], (

(

-

_

) (...3 ()),

(.5),). (.4 -[211].

, . [199] (, (50-90%) .) _

(2 3). 2 [199] «... » (.37), «... (

~ »(.38), . [110] . . (-), (), () (), ~ » (« »,

), ~ **»**

(

(

, **»**

),

~

(

»,

100-160 , 7,5-12,5 15-20) [110], _ ?) ?)! (, , ,
3. :1)

,

), (~

2)

[197].

,

3. ,

(319-), (~ **» »**

;) (

(

»

~

~

»

» [197]. ,

80-

(

()

,

(50),

) 40-50

,

50)

(

-) (

4-9

,

~

).

_

-

[195]

- 37 -

- 38 -

. [33]

.

·

_

[93].

,

;

2 () , 1- [118]. :

,

1)

1.3.1.

~

	90-	XX	(3-		
•			,			-)		,
				,	-		,	,	-

•

,

3- -

,

Cline=1645

Depth=2692

?

Iline=460

() .

, - - - (-

...)

(

· · · , , - · · () , , · · · () , , · · , · · , , , · · , · · , - · · , · ·

, , -, -

(.1.4).

).

- 45 -

3, [104], --3 [69]. [69] • • « **»** , , , 6-16 , [146]. .1.4 1.5 3). (-54 38 3, 50 (,), --3 , () -6). (

() • , 3 3

,

- 46 -

3

1.3.2.

 $(): 335,5^{\circ}-22,5^{\circ}; ((-): 22,5^{\circ}-67,5^{\circ}; (-): 67,5^{\circ}-112,5^{\circ}; (-): 112,5^{\circ}-157,5^{\circ}; (-): 112,5^{\circ}-157,5^{\circ}; (-): 202,5^{\circ}-247,5^{\circ}; (-): 247,5^{\circ}-292,5^{\circ}; (-): 292,5^{\circ}-335,5^{\circ}. (-): 292,5^{\circ}-335,5^{\circ}-35,5$

(max = max = 1; = avr = 2; = min

3

 $_{1}^{3}$ $_{1}(x) > _{2}(z) > _{3}(y).$

⁼ _{min}= ₃)

(),), ((), (), , (),), (-),),), ((), , •

)

,

() () -(.1.8).

- 48 -

(

~

,

3 (, 2005, 2007) -

, Tak Fault System Garra Tasselit (.1.10).

(.1.11).

).

,

« »

(.1.12). . (.1.13,)

.1.13. – « », : - , .

; –

- '())

(

- 54 -

:

;,

.1.14. : , (Palermo Aike Formation); -

- 55 -

.1.15.

(

[243]

Fort Worth)

3 .1.15, .1.16). (~

»

,

- 58 -

Кинематические характеристики сбросо-сдвига

- А суммарная (интегральная) величина смещения по разлому
- Б сбросовая компонента смещения по разлому (параллельная плоскости сместителя)
- В сдвиговая компонента смещения по разлому (параллельная плоскости оместителя)
- вертикальная компонента суммарной (интегральной) величины смещения по разлому
- Д горизонтальная компонента суммарной (интегральной) величины смещения по разпому
- Е видимая горизонтальная (стратиграфическое перемещание) компонента интегральной величины смещения по разпому

Направление падения висячего блока, измеренное на плоскости сместителя разлома, определяется уголом между вектором сбросовой компаненты и суммарной величины смещения по разлому.

(

,

1.4.1.

3,

,

2

2 [35,37].

- 59 -

2 (.1.20; ,), 3 (.1.20; ,). , 2

.

2 (, 2004): - - (-) »

_

,

1903113

; – «

2

3

3

,

•

.

1.4.2.

3

- 64 -

5,0-6,5

- 65 -

(). - 0,5-1,0 , - 50-100 (3 25 3 0,5 5,0). _ 50, 1,5-2,0 . 5° 30°. ()) (() (). • () () - 5,0-6,0 , () -50-100.1.21, .1.22) () (, 3, Inline .1.23) (4,5 , 6-7 (). Inline (60-70°), () « », « **»** 60-70° (40-60°) (). Cline

(

).

() (3). « **»**) (() 1. () 2. 3. 4. (5.). (1,0-1,5) (5,5-6,5). 6. 0° 20-30°. 7. 20-30°) ((70-80°) 8. 50-60° 40-50° .1.24) () (.1.25) ((). 1.26-1.27. _ (») ~ , « **»** (. 1.26) _ « **»** _ « -**»** () [8]

(5).

,

100 .

- 67 -

).

).

.1.25. - . .

Dip Map,

.1.26.

,

÷

- 69 -

:

(

«

»)

~

» —

;

(.1.29).

(

.1.28. -

•

).

;

.1.29. , 2004): (-(). (

21, 23.

(.1.33,).

					*
	:	(.177R)	(230R)	,
				142-1	
				142-1	

.1.31. - . :) ;) ;) ;)

.1.32.

(

-

2002 (

()

(

. 8)

8, 21, 23). 21, 23)

. .

---. [28] -(), ()

() »(.1.34).

3).

(

- 77 -

() ; –

.1.36.

: :

.1.37). (

,

,

- 80 -

•

- .1.38).

.*1.38*. : –

().

(320-340°) 0-10°). ,

. .

(30-40°

,

,

•

	,)	().	(
(,	- time reverse faul	ts))-	-
			()	,	(-
		– spa	ce reverse faults)			
()					
				3 ()
		- ()	()	-

, . . 1.4.4. - , , , , ,) - .

1.4.4.1.

,

[138]

•

•			,	
	,			-
		•		
	•		- 3 1/	
	,	()	
().	X	,	
`)*			

-	•				
_					1.1
		-			-
1		56	8	15	107
2	1	53	9	16_2	108
3	1	45	10		115
4	1	46	11	1-1	127
5	8	49	12	4	120
6	12_2	44	13	8	141
7	14 2 1	61	14	А	120

(.1.1)

 $3 \quad 44(\begin{array}{c} 2\\ 12 \end{array}) \quad 141(\begin{array}{c} 8 \end{array}).$

,

602 885

	(² ₁₂ ,	5		1)-4	130, 2	293	473				•				1,9	3,0)(-	
2	2,45).																	,			
											•						-				
		-									(:	1 2	2 –	-	
¹)		, 3 –	-				, 4	1 –).				1	2				
),		3()			4().			1-	2(-	
		,	_										,								
																			1	1.2	
	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	150-160	160-170	170-18	0 0-3	360	
1	9	4	1	3	6	4	8	0	0	0	0	3	3	6	6	3	5	7	7	140	
2	10	6	7	4	4	0	1	0	0	0	0	0	2	5	6	4	6	15	5	146	

	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	150-160	160-170	170-180	0-360
1	9	4	1	3	6	4	8	0	0	0	0	3	3	6	6	3	5	7	140
2	10	6	7	4	4	0	1	0	0	0	0	0	2	5	6	4	6	15	146
3	6	4	9	9	7	5	1	0	0	0	0	0	0	2	5	6	4	12	150
4	10	7	9	6	9	10	7	5	3	0	1	0	2	2	3	6	3	6	186
1	9	4	1	3	6	4	8	0	0	0	0	3	3	6	6	3	5	7	140
1+2	23	12	10	9	13	5	11	1	0	0	0	4	6	12	14	8	14	25	326
1+2+3	26	15	17	16	18	9	10	0	0	0	0	3	5	12	17	12	16	34	424
1+2+3+4	36	21	26	22	27	19	17	5	3	0	1	4	7	15	21	19	19	40	602
		1																	
	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	150-160	160-170	170-180	0-360
1	36	14	9	5	1	0	0	0	0	0	0	0	0	0	2	4	6	23	198
2	37	23	17	14	3	1	0	0	0	0	0	0	0	1	1	1	6	10	225
3	19	9	6	3	2	1	0	0	0	0	0	0	0	1	6	12	21	32	225
4	35	15	10	9	4	1	0	0	0	0	0	0	0	1	2	4	10	37	257
1	36	14	9	5	1	0	0	0	0	0	0	0	0	0	2	4	6	23	198
1+2	73	36	26	19	4	1	0	0	0	0	0	0	0	1	3	4	12	33	417
1+2+3	92	45	32	21	6	1	0	0	0	0	0	0	0	2	9	16	32	65	636
1+2+3+4	126	60	42	30	10	2	0	0	0	0	0	0	0	3	10	19	42	102	885
		12	2																
	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	150-160	160-170	170-180	0-360
1	36	10	7	2	3	1	0	0	0	0	0	0	0	1	1	3	3	10	155
2	21	13	14	4	4	0	0	0	0	0	0	0	0	0	0	1	2	12	148
3	7	7	1	2	1	0	0	0	0	0	0	0	0	0	1	0	2	8	63
4	4	5	3	3	8	1	0	0	0	0	0	0	0	0	0	1	2	9	76
1	36	10	7	2	3	1	0	0	0	0	0	0	0	1	1	3	3	10	155
1+2	57	23	21	7	7	1	0	0	0	0	0	0	0	1	1	4	5	22	297
1+2+3	64	31	22	8	8	1	0	0	0	0	0	0	0	1	2	4	7	31	354
1+2+3+4	68	36	25	12	16	2	0	0	0	0	0	0	0	1	2	4	9	41	430
		5																	
	0-10	10-20	20-30	30-40	40-50	50-60	60-7	0 70-	80 80	0-90 90	-100 100	-110 110	-120 120-	130 130-1	140 140-1	50 150-10	60 160-17	0 170-180	0-360
1	23	11	8	4	4	1	0	0	0	0	0	0	0	0	0	2	2 !	5 7	128
<u> </u>	20		5	Ŧ	_	· I	~I	~	v	Ŭ	v	U.	~		5	_	<u> </u>	· · ·	120

L		0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	150-160	160-170	170-180	0-360
	1	23	11	8	4	4	0	0	0	0	0	0	0	0	0	2	2	5	7	128
	2	11	13	13	4	3	0	1	0	0	0	0	0	0	0	0	1	4	4	109
	3	2	4	1	1	0	0	0	0	0	0	0	0	0	0	0	2	1	2	27
	4	7	3	2	4	1	1	0	0	0	0	0	0	0	0	0	0	1	6	54
	1	23	11	8	4	4	0	0	0	0	0	0	0	0	0	2	2	5	7	128
	1+2	34	24	21	8	7	0	1	0	0	0	0	0	0	0	2	3	9	11	231
	1+2+3	35	27	21	8	7	0	1	0	0	0	0	0	0	0	2	4	10	13	252
	1+2+3+4	42	30	23	12	8	1	1	0	0	0	0	0	0	0	2	5	10	19	298

L																				
Ľ		0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150	150-160	160-170	170-180	0-360
I	1	46	23	27	2	2	0	0	0	0	0	0	2	2	2	5	7	10	23	300
l	2	4	11	10	2	2	0	0	0	0	0	0	0	0	0	0	3	4	18	107
I	3	3	1	5	1	1	0	0	0	0	0	0	0	0	0	0	0	3	4	38
I	4	2	3	4	2	5	1	0	0	0	0	0	0	0	0	0	0	1	4	48
ľ	1	46	23	27	2	2	0	0	0	0	0	0	2	2	2	5	7	10	23	300
I	1+2	50	33	37	4	4	0	0	0	0	0	0	2	2	2	5	10	14	41	401
I	1+2+3	53	34	42	4	5	0	0	0	0	0	0	2	2	2	5	10	17	44	433
ſ	1+2+3+4	55	37	45	6	10	1	0	0	0	0	0	2	2	2	5	10	17	48	473

- 85 -

3 4 (

(300) 1,5-2

1,2-1,7

•

-

-

_

_

,

,

2,5 (¹

,

4.

(1,5

-

,

 $_{16}^{2}$ 1(.1.2).

20-40°)

- 86 -

1.4.4.3.

1.4.4.4.

, ()- - , -

)

$$() , , = L_{i+l}/L_{i} -$$

$$() 3(), ,$$

$$() () 3(),$$

$$() , () 20 + 10(10), -10(10)$$

3. . . [138]. 3-4

1.4.4.5.

1.5.

(

(

).

)

•

()

)

																		1.3.
-									-			-						
	min	max		min	max		min	max		min	max		min	max				
S5	-390	-230	160	-300	-180	120	-300	-180	120	-330	-200	130	-330	-200	130	-390	-230	160
S4	-520	-300	220	-390	-230	160	-390	-220	170	-440	-250	190	-440	-250	190	-520	-300	220
S3	-580	-340	240	-440	-250	190	-440	-240	200	-500	-280	220	-500	-290	210	-580	-330	250
S2	-840	-510	330	-640	-350	290	-640	-350	290	-710	-400	310	-710	-400	310	-840	-480	360
S1	-1190	-710	480	-990	-510	480	-990	-520	470	-1040	-600	440	-1040	-560	480	-1190	-710	480
	-1320	-780	540	-1110	-560	550	-1110	-680	430	-1160	-670	490	-1160	-600	560	-1320	-800	520
1	-1450	-850	600	-1230	-630	600	-1230	-630	600	-1260	-770	490	-1260	-690	570	-1450	-890	560
B1	-2780	-2100	680	-2650	-2060	590	-2650	-2100	550	-2690	-2190	500	-2690	-2080	610	-2780	-2150	630
	-3400	-2710	690	-3370	-2680	690	-3370	-2790	580	-3330	-2810	520	-3320	-2690	630	-3400	-2770	630
T1	-3660	-2820	840	-3690	-2910	780	-3690	-3090	600	-3720	-3080	640	-3720	-2920	800	-3660	-2960	700
T2	-3940	-2960	980	-4070	-3140	930	-4070	-3420	650	-4130	-3320	810	-4130	-3140	990	-3940	-3180	760
T5	-4540	-3250	1290	-4790	-3590	1200	-4790	-4020	770	-4910	-3760	1150	-4910	-3520	1390	-4560	-3620	940
	-5250	-3330	1920	-5630	-3690	1940	-5630	-4150	1480	-5930	-3820	2110	-5720	-3550	2170	-5720	-3660	2060

3,44 4,3.

(.1.40, 1.41)

,

- 92 -

. 1.41. -= 125,58 x0,81; R2 = 0,87; 84,88 x1,02; R2 = 0,92;

: y = 93,60 x0,99; R2 = 0,90; - y = 98,76 x0,9; R2 = 0,86; () (:y = y) = 98,79 x0,86; R2 = 0,91; :y =:y = 115,64 x0,9; R2 = 0,91). -() () ()

I.

1.

8. () () 9. -(350-360°), -(320-340°) 10. : (20°) 40-60°), () ((11.) (-) . 1.43). П. (1. -1¹(3-) : 1) , 2) , 3) 2. : 1) , 2) 3. :1) , 2) 3) () () 3 4. (20-30) 5. 5-) -6. ()

()

- 95 -

68,5 .

15. 20 . (8,5 2,5-3 10). 1.5.2. 2-()

-

1.5.2.1.

(DV-). Discovery 3 :

; ;

-3

()

(8) 151 .

.1.46. - .

s, _bQ.

(Mz)

(Kz)

(

_

_

),

*

													1.4
				,			,			, %			**, %
	()	max	min		max	min		Mz+Kz	Mz	Kz	Mz+Kz	Mz	Kz
1	S ₂	-321	-506	185	-3611	-4364	753	100,0%	96,1%	3,9%	100,0%	36,1%	63,9%
2		-554	-875	321	-3555	-4299	744	100,0%	94,9%	5,1%	100,0%	34,9%	65,1%
3	1	-651	-986	335	-3554	-4301	746	100,0%	95,2%	4,8%	100,0%	35,2%	64,8%
4	2 7	-1023	-1347	324	-3575	-4317	742	100,0%	94,7%	5,3%	100,0%	34,7%	65,3%
5	9	-1143	-1494	351	-3561	-4293	732	100,0%	93,3%	6,7%	100,0%	33,3%	66,7%
6	M ₁	-1305	-1680	375	-3511	-4259	747	100,0%	95,3%	4,7%	100,0%	35,3%	64,7%
7	1 17	-1492	-1878	386	-3548	-4267	719	100,0%	91,7%	8,3%	100,0%	31,7%	68,3%
8	18	-1511	-1886	374	-3553	-4275	722	100,0%	92,1%	7,9%	100,0%	32,1%	67,9%
9	21	-1618	-1970	352	-3576	-4268	691	100,0%	88,2%	11,8%	100,0%	28,2%	71,8%
10	5	-1731	-2079	348	-3600	-4279	679	100,0%	86,6%	13,4%	100,0%	26,6%	73,4%
11	1 8	-1806	-2160	354	-3617	-4278	661	100,0%	84,3%	15,7%	100,0%	24,3%	75,7%
12	1	-1850	-2200	349	-3615	-4275	659	100,0%	84,1%	15,9%	100,0%	24,1%	75,9%
13	3	-1930	-2273	342	-3619	-4285	665	100,0%	84,9%	15,1%	100,0%	24,9%	75,1%
14	4	-1963	-2287	324	-3637	-4287	650	100,0%	82,9%	17,1%	100,0%	22,9%	77,1%
15	1 5	-1995	-2318	322	-3638	-4280	642	100,0%	81,9%	18,1%	100,0%	21,9%	78,1%
16	2 8	-2074	-2406	332	-3628	-4278	650	100,0%	82,8%	17,2%	100,0%	22,8%	77,2%
17	0 10	-2150	-2489	338	-3626	-4279	653	100,0%	83,3%	16,7%	100,0%	23,3%	76,7%
18	1 12	-2254	-2572	318	-3645	-4283	638	100,0%	81,3%	18,7%	100,0%	21,3%	78,7%
19	2 12	-2309	-2626	317	-3659	-4287	628	100,0%	80,1%	19,9%	100,0%	20,1%	79,9%
20	2-1 14	-2463	-2887	425	-3680	-4265	585	100,0%	74,6%	25,4%	100,0%	14,6%	85,4%
21	15	-2572	-2952	380	-3677	-4214	538	100,0%	68,6%	31,4%	100,0%	8,6%	91,4%
22	1 16	-2599	-2984	385	-3671	-4206	535	100,0%	68,2%	31,8%	100,0%	8,2%	91,8%
23	2 16	-2622	-2998	376	-3668	-4195	527	100,0%	67,2%	32,8%	100,0%	7,2%	92,8%
24		-2752	-3063	311	-3637	-4255	618	100,0%	78,8%	21,2%	100,0%	18,8%	81,2%
25	GRG	-2875	-3186	311	-3661	-4249	589	100,0%	75,1%	24,9%	100,0%	15,1%	84,9%
26	1	-2917	-3227	310	-3658	-4254	596	100,0%	76,1%	23,9%	100,0%	16,1%	83,9%
27	2	-2996	-3294	298	-3652	-4245	592	100,0%	75,6%	24,4%	100,0%	15,6%	84,4%
28	4	-3063	-3372	310	-3673	-4256	583	100,0%	74,3%	25,7%	100,0%	14,3%	85,7%
29	8	-3358	-3720	361	-3680	-4191	512	100,0%	65,3%	34,7%	100,0%	5,3%	94,7%
30		-3681	-4465	784	0	0	0	100,0%	0,0%	100,0%	100,0%	0,0%	100,0%

_

).

,

3,

-

)

-

**

*

.

,

(

(

.

•

() (<u>1</u>) -

					-	-	,	-
					-			-
						50	-70 .	
		,				(.1.46, 1.4	-7, .1.4.).	-
		,				-		-
	•	3,	,					-
	-	·		,	-		,	,
					(.1.46). (.1.4	17),	-
	(-368	30)	(-4084) 104 .			,	_
	(-554)		109		()	(-663)	
471 .		3		744) , 3	, 784 ,	40 (784	4-
744)	3.				42		(513	-
4/1). 1. :				-	-		50.	-
2.		5% ,		-				-
		60%. (.1	.47)	,		,	(.1.4	4) -
235)			(784)	-		30% (_
3.	3			,	-	-		-
,								_
4.						(.1.47).	_
			0,88.			-		_

0,79.

-

1,0 -

•

								1=1								
				,			,		,				, %			**, %
	()	max	min		max	min					Mz+Kz	Mz	Kz	Mz+Kz	Mz	Kz
1	S ₂	-321	-506	185	-2862	-3069	207	310	207	103	100,0%	66,6%	33,4%	100,0%	46,6%	53,4%
2		-554	-875	321	-2793	-3011	218	310	218	92	100,0%	70,3%	29,7%	100,0%	50,3%	49,7%
3	1	-651	-986	335	-2783	-3005	222	310	222	88	100,0%	71,5%	28,5%	100,0%	51,5%	48,5%
4	2 7	-1023	-1347	324	-2790	-3012	222	310	222	88	100,0%	71,5%	28,5%	100,0%	51,5%	48,5%
5	9	-1143	-1494	351	-2771	-3020	249	310	249	61	100,0%	80,2%	19,8%	100,0%	60,2%	39,8%
6	M ₁	-1305	-1680	375	-2729	-3007	278	310	278	32	100,0%	89,7%	10,3%	100,0%	69,7%	30,3%
7	1 17	-1492	-1878	386	-2745	-2977	232	310	232	78	100,0%	74,9%	25,1%	100,0%	54,9%	45,1%
8	18	-1511	-1886	374	-2748	-2972	224	310	224	86	100,0%	72,4%	27,6%	100,0%	52,4%	47,6%
9	21	-1618	-1970	352	-2779	-2974	196	310	196	114	100,0%	63,1%	36,9%	100,0%	43,1%	56,9%
10	5	-1731	-2079	348	-2784	-2960	177	310	177	133	100,0%	57,0%	43,0%	100,0%	37,0%	63,0%
11	1 8	-1806	-2160	354	-2784	-2966	181	310	181	129	100,0%	58,5%	41,5%	100,0%	38,5%	61,5%
12	1	-1850	-2200	349	-2780	-2960	180	310	180	130	100,0%	58,0%	42,0%	100,0%	38,0%	62,0%
13	3	-1930	-2273	342	-2774	-2970	196	310	196	114	100,0%	63,1%	36,9%	100,0%	43,1%	56,9%
14	4	-1963	-2287	324	-2779	-2979	200	310	200	111	100,0%	64,4%	35,6%	100,0%	44,4%	55,6%
15	1 5	-1995	-2318	322	-2791	-2986	195	310	195	116	100,0%	62,7%	37,3%	100,0%	42,7%	57,3%
16	2 8	-2074	-2406	332	-2784	-2974	190	310	190	120	100,0%	61,2%	38,8%	100,0%	41,2%	58,8%
17	0 10	-2150	-2489	338	-2783	-2976	193	310	193	117	100,0%	62,1%	37,9%	100,0%	42,1%	57,9%
18	1 12	-2254	-2572	318	-2791	-2974	183	310	183	127	100,0%	59,0%	41,0%	100,0%	39,0%	61,0%
19	2 12	-2309	-2626	317	-2797	-2981	184	310	184	126	100,0%	59,3%	40,7%	100,0%	39,3%	60,7%
20		-2752	-3063	311	-2852	-2952	100	310	100	210	100,0%	32,3%	67,7%	100,0%	12,3%	87,7%
21	GRG	-2875	-3186	311	-2871	-2945	74	310	74	236	100,0%	23,8%	76,2%	100,0%	3,8%	96,2%
22	1	-2917	-3227	310	0	0	0	310	0	310	100,0%	0,0%	100,0%	100,0%	0,0%	100,0%

*

**

).

3,

 $_{1}^{1}$

 $1 \\ 1$

(

- 105 -

- 106 -

.1.48.

1.

2.

(

), , 4, 5, $_{l}$, $S_{2}Q($

1 1 :).

3.

 $1 \\ 1$ 0,81. $1 \\ 1$ (4.) () .) 5. (: 1. 2. 3. ;; 20-50) (•) ((

() () () () (

)

-

-

-

														1.6
				8		4		2		1 1				
				_										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	-4084	404	-3420	62	-3069	6	-2996	-18	-2917	-14	-2876	-12	-2752	-39
	1001		0120		0000		2000		2011		2010		2102	
	1	2		1		45		2-1		2		1		0
		16		16		15		14		12		12		10
1	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	-2622	80	-2599	68	-2572	66	-2463	9	-2323	-14	-2283	-29	-2199	-49
	-2702		-2667		-2638		-2472		-2309		-2254		-2150	
	1	1	1				1		1	1	1		1	
		5		4		3		1		8		5		21
1	30	31	32	33	34	35	36	37	38	39	40	41	42	43
	-2037	_41	-2002	-29	-1988	-59	-1908	-57	-1861	-55	-1798	-69	-1716	-08
	-1995	-41	-1963	-30	-1930	-50	-1850	-57	-1806	-55	-1731	-00	-1618	-90
							-			-				
		18		1 17		1		9		7		1		
4		45	46	47	40	40	50	51	50	50	54	55	50	57
1	-1627	45	40 -1613	47	48 -1453	49	-1247	51	52 -1102	53	⁵⁴	55	-663	57
	-1511	-116	-1492	-121	-1305	-149	-1143	-104	-1023	-80	-651	-105	-554	-109
				2				2-1						
	、 、			16			14	1		(-
)													2
		,						(6	56-80).				$12^{2}(-14)$
)	(100)													
, ,														
							(-1(<i>IJ)</i> .						-
							•							-
1	ı, (-149)													
								,			122	-		
											•		12	2
		•							2					12
	-0,97. 12 ²													
													,	2
			•	~	70			,						12
				0,	<i>;</i> /0.			()				
								-0,78	8.					
	(
)					
						-	-0,96,(J,/U ()	,88					

,

•

,

•

- 108 -

- 111 -

,

	C -												
				,			,		,				, %
1	2	max	min	5	max	min	0	0	10	11	Pz+Mz+Kz	Pz	Mz+Kz
1	(Herz_Linc)	-2600	₄ -1940	5 660	ů N	0	8 0	9 660	10	660	12	0.0%	14
<u> </u>	C-C -	2000	1010	000	Ű	Ŭ	Ū	000	Ū	000	100,070	0,070	100,070
				,			,		,				, %
		max	min		max	min					Pz+Mz+Kz	Pz	Mz+Kz
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	- (Herz_Onc)	-2440	-1940	660	-440	-100	340	740	340	740	100,0%	45,9%	54,1% 100.0%
-	F2 -	2000	1010	000	Ū	Ū	Ū	1.10	Ű	1.10	100,070	0,070	100,070
													.%
		max	min		max	min					Pz+Mz+Kz	Pz	Mz+Kz
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	- (Herz_Unc)	-2200	-1300	900	-740	-400	340	900	340	560	100,0%	37,8%	62,2%
2	F2 -	-2440	-1940	660	-440	-100	340 0	900	0	900	100,0%	0.0%	100.0%
Ű	F6top – F6	2000	1010	000	Ŭ	v	v	000	Ū	000	100,070	0,070	100,070
				,			,		,				, %
		max	min		max	min					Pz+Mz+Kz	Pz	Mz+Kz
1	2	3	4	5	6	7	8	9	10	11	12	13	14
ן ר	- (Herz_Unc)	-1980	-1200	780	-920	-620	300	780	340	480	100,0%	38,5%	61,5%
2	F2 -	-2200	-1700	740	-740	-400	340	780	340	440	100,0%	43,0%	56.4%
4	F6top – F6	-2600	-1940	660	0	0	0	780	0	780	100,0%	0,0%	100,0%
	Cal_Unc -											,	
				,			,		,				, %
		max	min		max	min					Pz+Mz+Kz	Pz	Mz+Kz
1		3	4	5	6	7	8	9	10	11	12	13	14
2	- (Herz_Ofic)	-1980	-1080	780	-1060	-620	420 300	900	420	480 600	100,0%	40,7%	53,3% 66.7%
3	F2 -	-2200	-1300	900	-740	-400	340	900	340	560	100,0%	37.8%	62.2%
4	F6top – F6	-2440	-1700	740	-440	-100	340	900	340	560	100,0%	37,8%	62,2%
5	Cal_Unc -	-2600	-1940	660	0	0	0	900	0	900	100,0%	0,0%	100,0%
	F6bot – F6												
				,			,		,				, %
1	2	max	min	5	max	min	8	9	10	11	Pz+Mz+Kz	Pz 13	Mz+Kz
1	– (Herz Unc)	-1780	-700	1080	-1400	-800	600	1080	600	480	100.0%	55.6%	44.4%
2	C-C -	-1980	-1080	900	-1060	-640	420	1080	420	660	100,0%	38,9%	61,1%
3	F2 –	-1980	-1200	780	-920	-620	300	1080	300	780	100,0%	27,8%	72,2%
4	F6top – F6	-2200	-1300	900	-740	-400	340	1080	340	740	100,0%	31,5%	68,5%
5	Cal_Unc -	-2440	-1700	740	-440	-100	340	1080	340	740	100,0%	31,5%	68,5%
6	F6bot – F6	-2600	-1940	660	0	0	0	1080	0	1080	100,0%	0,0%	100,0%
		max	min	,	mov	min	,		3		Pz+Mz+Kz	D-7	, % Mz+Kz
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	- (Herz_Unc)	-1150	200	1350	-1920	-1400	520	1350	520	830	100,0%	38,5%	61,5%
2	С-С -	-1780	-700	1080	-1400	-800	600	1350	600	750	100,0%	44,4%	55,6%
3	F2 –	-1980	-1080	900	-1060	-640	420	1350	420	930	100,0%	31,1%	68,9%
	E6ton – E6	4000		700			200	1050				22 20/	77,8%
4		-1980	-1200	780	-920	-620	300	1350	300	1050	100,0%	22,2%	71.00
4	Cal_Unc -	-2200	-1200 -1300	900 740	-920 -740	-620 -400	300	1350 1350	300 340	1050 1010	100,0%	25,2%	74,8%
4 5 6 7	Cal_Unc - F6bot - F6	-1980 -2200 -2440	-1200 -1300 -1700 -1940	900 740 660	-920 -740 -440	-620 -400 -100	300 340 340	1350 1350 1350 1350	300 340 340	1050 1010 1010 1350	100,0% 100,0% 100,0%	22,2% 25,2% 25,2%	74,8% 74,8%
4 5 6 7	Cal_Unc - F6bot - F6 Fund -	-1980 -2200 -2440 -2600	-1200 -1300 -1700 -1940	900 740 660	-920 -740 -440 0	-620 -400 -100 0	300 340 340 0	1350 1350 1350 1350	300 340 340 0	1050 1010 1010 1350	100,0% 100,0% 100,0%	25,2% 25,2% 0,0%	74,8% 74,8% 100,0%
4 5 6 7	Cal_Unc - F6bot - F6 Fund -	-2200 -2440 -2600	-1200 -1300 -1700 -1940	900 740 660	-920 -740 -440 0	-620 -400 -100 0	300 340 340 0	1350 1350 1350 1350	300 340 340 0	1050 1010 1010 1350	100,0% 100,0% 100,0% 100,0%	25,2% 25,2% 0,0%	74,8% 74,8% 100,0%
4 5 6 7	Cal_Unc - F6bot - F6 Fund -	-2200 -2440 -2600	-1200 -1300 -1700 -1940 min	900 740 660	-920 -740 -440 0	-620 -400 -100 0	300 340 340 0	1350 1350 1350 1350	300 340 340 0	1050 1010 1010 1350	100,0% 100,0% 100,0% 100,0% Pz+Mz+Kz	22,2% 25,2% 25,2% 0,0%	74,8% 74,8% 100,0% , % Mz+Kz
4 5 7	Cal_Unc - F6bot - F6 Fund -	-2200 -2440 -2600 max 3	-1200 -1300 -1700 -1940 min 4	780 900 740 660 ,	-920 -740 -440 0 max 6	-620 -400 -100 0 min 7	300 340 340 0	1350 1350 1350 1350	300 340 340 0	1050 1010 1010 1350	100,0% 100,0% 100,0% 100,0% Pz+Mz+Kz 12	22,2% 25,2% 25,2% 0,0% Pz 13	74,8% 74,8% 100,0% ,% Mz+Kz 14
4 5 6 7	Cal_Unc - F6bot - F6 Fund - 2 - (Herz_Unc) C C	-1980 -2200 -2440 -2600 max 3 -1100	-1200 -1300 -1700 -1940 min 4 500	780 900 740 660 , , , , , , , , , , , , , , , , ,	-920 -740 -440 0 max 6 -2600	-620 -400 -100 0 min 7 -1400	300 340 340 0 , , 8 1200 E20	1350 1350 1350 1350	300 340 340 0 , 10 1200 520	1050 1010 1010 1350	100,0% 100,0% 100,0% 100,0% Pz+Mz+Kz 12 100,0% 100,0%	22,2% 25,2% 25,2% 0,0% Pz 13 75,0%	74,8% 74,8% 100,0% Mz+Kz 14 25,0%
4 5 6 7 1 1 2 3	Cal_Unc - F6bot - F6 Fund - - (Herz_Unc) C-C - F2 -	-1980 -2200 -2440 -2600 -2600 -2600 -1100 -1150 -1780	-1200 -1300 -1700 -1940	780 900 740 660 , , , , , , , , , , , , , , , , ,	-920 -740 -440 0 -440 0 -2600 -1920 -1400	-620 -400 -100 0 -100 -100 -100 -1400 -1400 -800	300 340 340 0 , , , , , , , , , , , , , , , , , ,	1350 1350 1350 1350 1350 1350	300 340 340 0 	1050 1010 1010 1350 11 400 1080	100,0% 100,0% 100,0% 100,0% Pz+Mz+Kz ¹² 100,0% 100,0%	22,2% 25,2% 25,2% 0,0% Pz ¹³ 75,0% 32,5% 37,5%	74,8% 74,8% 100,0% Mz+Kz ¹⁴ 25,0% 67,5% 62,5%
4 5 7 1 1 2 3 4	Cal_Unc - F6 F6bot - F6 - - Fund - - - (Herz_Unc) C-C - F2 - F6top - F6	-1980 -2200 -2440 -2600 -2600 -2600 -1150 -1150 -1150 -1780 -1980	-1200 -1300 -1700 -1940 -1940 -1940 -1940 -1940 -1940 -1940 -1080	780 900 740 660 , , , , , , , , , , , , , , , , ,	-920 -740 -440 0 -440 0 -2600 -1920 -1920 -1400 -1060	-620 -400 -100 0 -100 -100 -1400 -1400 -800 -640	300 340 340 0 , , 8 1200 520 600 420	1350 1350 1350 1350 1350 1350 1350 1350	300 340 0 10 1200 520 600 420	1050 1010 1010 1350 11 400 1080 1000 1180	100,0% 100,0% 100,0% 100,0% Pz+Mz+Kz 12 100,0% 100,0% 100,0%	22,2% 25,2% 25,2% 0,0% Pz 13 75,0% 32,5% 37,5% 26,3%	74,8% 74,8% 100,0% <u>Mz+Kz</u> 14 25,0% 67,5% 62,5% 73,8%
4 5 7 1 1 2 3 4 5	Cal_Unc - F6 F6bot - F6 - - Fund - - - (Herz_Unc) C-C - - F2 - F6 F6top - F6 Cal_Unc - F6	-1980 -2200 -2440 -2600 max 3 -1100 -1150 -1150 -1780 -1980 -1980	-1200 -1300 -1700 -1940 -1940 -1940 -1940 -1940 -1940 -1940 -1080 -1200	780 900 740 660 , , , , , , , , , , , , , , , , ,	-920 -740 -440 0 -920 -1920 -1920 -1400 -920	-620 -400 -100 0 -100 -1400 -1400 -800 -640 -620	300 340 340 0 , 1200 520 600 420 300	1350 1350 1350 1350 1350 1350 1350 1350	300 340 340 0	1050 1010 1010 1350 11 400 1080 1000 1180 1300	100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%	22,2% 25,2% 25,2% 0,0% Pz 13 75,0% 32,5% 37,5% 26,3% 18,8%	74,8% 74,8% 100,0% <u>Mz+Kz</u> 14 25,0% 67,5% 62,5% 73,8% 81,3%
4 5 7 1 1 2 3 4 5 6	Cal_Unc - F6 F6bot - F6 - - Fund - 2 - (Herz_Unc) C-C - F2 - F6top - F6 Cal_Unc - F6bot - F6	-1380 -2200 -2440 -2600 -2600 -2600 -1150 -1150 -1780 -1980 -2200	-1200 -1300 -1700 -1940 -1940 -1940 -1940 -1940 -1940 -1940 -1080 -1200 -1300	780 900 740 660 , 5 1600 1350 1080 900 780 900	-920 -740 -440 0 -920 -1920 -1400 -1060 -920 -740	-620 -400 -100 0 -100 -1400 -1400 -800 -640 -620 -400	300 340 340 0 , 1200 520 600 420 300 340	1350 1350 1350 1350 1350 1350 1350 1350	300 340 340 0 	1050 1010 1010 1350 11 400 1080 1000 1180 1300 1260	100,0% 100,0% 100,0% 100,0% 100,0% 12 100,0% 100,0% 100,0%	22,2% 25,2% 25,2% 0,0% Pz 13 75,0% 32,5% 37,5% 26,3% 18,8% 21,3%	74,8% 74,8% 100,0% Mz+Kz 14 25,0% 67,5% 62,5% 73,8% 81,3% 78,8%
4 5 7 1 1 2 3 4 5 6 7	100 p- 100 Cal_Unc - F6 F6bot - F6 - - Fund - - - (Herz_Unc) C-C - - F2 - F6 F6top - F6 Cal_Unc - F6 F6bot - F6 - -	-1380 -2200 -2440 -2600 -2600 - 1260 -1150 -1150 -1180 -1980 -1980 -2200 -2440	-1200 -1300 -1700 -1940 -1940 -1940 -1940 -1940 -200 -700 -1080 -1200 -1300 -1700	780 900 740 660 , , , , , , , , , , , , , , , , ,	-920 -740 -440 0 -920 -1920 -1400 -1060 -920 -740 -440	-620 -400 -100 0 -100 -1400 -1400 -640 -620 -400 -100	300 340 0 , 8 1200 520 600 420 300 340 340	1350 1350 1350 1350 1350 1350 9 1600 1600 1600 1600 1600	300 340 340 0 10 1200 520 600 420 300 340 340	1050 1010 1010 1350 11 400 1080 1000 1180 1300 1260 1260	100,0% 100,0% 100,0% 100,0% 100,0% 12 100,0% 100,0% 100,0% 100,0%	22,2% 25,2% 25,2% 0,0% Pz 13 75,0% 32,5% 37,5% 26,3% 18,8% 21,3% 21,3%	74,8% 74,8% 100,0% Mz+Kz 14 25,0% 67,5% 62,5% 73,8% 81,3% 78,8% 78,8%

. (-

80%)

50

(

.1.7).

- 115 -

1.7

(.1.7) (.1.51).

,

.1.52.

(

).

(Hoggar Massif)

Pz Mz-Kz (Hoggar Massif),

)

()

(

(.1.52).

(

).

(. NCL-2),

(Geology of 229, 245-Algeria / H. Askri at all. Contribution from SONATRACH Exploration Division, Research and Development Centre and Petroleum Engineering and Development Division). . NCL-2 100

						100			
250 .			500	1800 .				-	
						. NCL-	2(-	
)			(-	
).						()			
	,							-	

					1.8
		. NCL-2			
		(229)			
1	2	3	4	5	6
1	Upper Devonian (F2)	70	90	0,78	
2	Upper & Middle Devonian	350	450	0,78	
3	F6 (Unit C3)	70	70-100	0,7-1,0	
4	F6 (Unit M)	70-80	80-120	0,67-0,88	
5	Tannezuft	280-320	250-300	1,0-1,12	
6	Unit III-2 (Hamra)	120	100-120	1,0-1,2	
7	Cambrian (Unit II)	250	250-300	0,83-1,0	

.1.8), (

,			,	,				-
	0,67	1,2,			0,89.		,	-
				,		1800	2500-300	00 .

 	1000	29	900,,),	,	Fahat)		-	(110	5000	(6000
).		-				,			,	2500-300	. 00		-
		-	2-	3-						,	(50-80%)		, _
		,	•										-

)

(

2006-2007 . . 3

0

(

1620) (10×8)

.

, .

1987. 350. - 500-600. 1000. 400.) 7 (2500.) (3000.)

, 7, . , 7, .

. 1.5.4. , (3- 1-

),), ______ (), ______ () _____ -) _____ - _____

1.5.5.

•

(: : ;) , (?) () ,

() _ -,

_

-

•

•

2.

3,

, .

, , ,

.

-

, . - , . .

), (. . •), (. . . (), (. . • •), (), . .) (

)

(.2.1).

(2D

, , , ,

,

:

-, --

-, -

-

.

_

- 123 -

[,]

(. .) (. .) •• . .). 1. () • (), (-). (*R R*'-) T, *R*-() , R , *R*'-), (*R*'-*R*-Т *R'*-R , L-(1965) « ».

, , ,

, , , ,

(.2.4, 2.5).

, (...) - , (...). 1. , ... ():

- 127 -

- 128 -

(. . , 2008),

(2).

() . (₁-

3-

[84].

[83].

"

(.1).

" [Ramsay, Huber, 1987].

[Ramsay, Huber, 1987; Strike-slip.., 1985].

"

~

,

,,

"

, ,, ,,

(.1 ,) [Ramsay, Huber, 1987].

(

)

(.1).

- 129 -

"

:

- , R₂, 45°

	,(.1	,)					(-
),			,		,			-
						,		
		,						-
				•				-

---, -, -

[254],

N.H.Woodcock

- : San Andreas fault (), Chaman fault (), Alpine fault (), North Anatolian fault (), Karakorum, Altyn Tagh Kunlun fault (), Hope fault Kakapo fault (-), Southern Diagonal faults () .). A.G.Sylvester [248], , , , ,

San Andreas,

2,

, , , . .

».

».

A.Sylvester

:

,

;

3)

»

 .3.4.
 «
 »
 Sylvester, Smith (1976); Gamond and Odonne

 (1983), Naylor & others (1986), A.Sylvester (1988), K.Kwolek (2004): 1 «
 »,

 (A.Sylvester, 1988); 2 «
 »,

 (A.Sylvester, 1988); 3 «
 »,

 (K.Kwolek, 2004);4

(R R') , P L- , F ·

max•

3.3.

(

) 5-

3

- 138 -

.3.6.

1-1) 2-2), 3-3 4-4). (((

)

,

:

,

(

- 140 -

. 2) (3-3).

,

(1-1),

2-

(

- 142 -

.3.10.

?

)

.3.11.

90°

:

ர்^{ஏ¹} пс

•

σ³₽

.3.13.

nan be arts)

Ha all an tim marc (alim 43

)

- 146 -

,					_
90°					-
		()		10-15°.
			,		, –
(.3.14,).			,	-
	,				

2	
3	

1. - 1000-3000 :), (); - 300-1000 : 2. ().); 1-(- 100-300 : , 3.), ((); - 30-100 : 4. 2-(), (3-); - 10-30 : 5.), -(),), (-3-10 : 4-6. (), ; - 1-3 : 7. 0--(()), () [91],

(),

	-	-		-	3.1
	-	-	-	-	
1	2	3	4	5	6
1	(1000-3000)		3	()	- ()
2	(300-1000)		,	()	()
3	(100-300)	1-	,	()	- ()
4	(30-100)	2-	1	- ()	()
5	(10-30)	3-	, ()		()
6	(3-10)	4-	,		
7	(1-3)	0-			

3.4.2.

max,

•

(.3.15) , (₁ < ₂)

2)

,

,

:1)

1

max•

•

· ·

1.

.3.15.

)

3.5.

· · · ()

« »,

, , .

, ____, [28].

, , , , , , «

(

)

>>

.

- 149 -

+ max

 $m_{\rm p} > m_{\rm c}$

max

 $: \frac{\dagger^{-}_{max}}{\dagger^{+}_{max}} = \frac{\sqrt{E_c}}{\sqrt{E_p}} \, . \quad -$

$$: \frac{m_p}{m_c} = \frac{\dagger - max}{\dagger + max},$$

$$-max + max.$$

Υ.

1/*r*

$$\ddagger_{max} = \frac{3M}{m^2 b}, \qquad b -$$

(max max)

> .3.16). (

(,)

(,) ,[28]. (,)

max

(,)

(.3.16). : $\dagger_{max} = \frac{4M}{m^2 b}, \ \ddagger_{max} = \frac{2M}{m^2 b},$

max,

,

	,	,		
	• • • • •	k	max max	- k .
	,			, -
	,		•	,
		,		
		,		,
·				,

,

,

(.3.16, 3.17)

,

_

•

),

(

_

)

(

»,

109

173

365

429

493

535

- 156 -

(

),

- 158 -

,

,

• • •

(

 PaleoSurf_

« . (.3.18-3.21). , ,

(.3.22).

,

.3.22. - . . (

.3.22

, ,

« » . 3.5.1.

, , (177R, 176R 196R)

(1111,11011 1)011

, 231R 176R _____

)

231R, 233R, 234R, 235R

« »

	,		, 18	36	,		•
,				«	(» .3.23)	-
		«	»,				-

-

, _ ,	_	((). ,),	- -
	,			•	-

:

3.5.2.1.

_

_

- ANSYS (10.0) 11800-18400 , (). (0-4500 ..) 27 (Q A), 4.5 , 40-50 500 .

3.5.2.2.

.3.26-3.29 4-: $_{x},\quad _{z},\ \tau _{xz},\quad _{xn},\quad _{zn},$; $\sigma_x _{m}$, σ_{m-ost} , σ_z – ; Oxz; $\tau_{xz} \sigma_{xn}$ – ; σ_{zn} – ; σ_m-; σ_{m-ost} - σ_{m} _ , •

. 3.26.

(

1-1

х

1-2%

(

х,

(

:

).

:

),

. 3.27.

),

(

. 3.28.

(

 $\sigma_{m\text{-ost}}$

.

. 3.30). (

- 170 -

3.6.1.

,

(

; ; ().)

)

_

-_

-

_

(1:1).

,). (, -(. . ., [114]), () ()). () (() , [114] : 1)); (2)); (3)) ((), . .3.31. .3.31 -) -(() (_) _ () _), (().), (_ :

- 173 -

, , ,

,

_

•

- 174 -

, ((), 310-330°, 30-50°), (< 90°) 1. (310-330°, 30-50°), < 45° . (350-10°), (350-10°), (350-10°), (350-10°), (350-10°),

2,

«

,

3.6.3.

,

1.

.3.32).

(

4-

(

(

.3.32.

(

[222, 214, 173],

,

۰**٬**...

[223, 225]. , . . [32, 173]

_

, ." [173] . 399. , (.4.1).

).

[172, 166].

[185].

(

-

),

. OB (.4.3)

, - - - , , - , , . .

(.4.4.,).

[208]

,

[174].

90.

(

)

[233], ",

"... " [174].

),

(

[193]. , , , , , , , , , , , .

. . . , , . . .

_

,

.

. .

1.		[177]:			,	
	(),				
,		,	:			
2.			,			:
3.						,
				,		

- , ()

"

.4.5.). (

[224],

 $F_{I}^{*} = \sum_{r=I}^{A} \left(\frac{(m^{r}t^{r})^{2}}{|m^{r}|^{2}|t^{r}|^{2}} \right),$

m - , $F_1 F_1^*$.4.5.). (

(7.2)

-).

(7.1)

n S :

$$\sqrt{(F_1)^2 + (F_1^*)} = A.$$
(7.3)

$$\uparrow_{nr} = \begin{bmatrix} n & s & m & (.4.5.), \\ (1 - \gamma_{\dagger}) n_{I}^{r} r_{I}^{r} - (1 + \gamma_{\dagger}) n_{3}^{r} r_{3}^{r} \end{bmatrix} , r = s,m.$$
(7.4)
$$n_{k}, s_{k}, m_{k} -$$

k=1,2,3.

,

*F*₁, (7.1),

$$|\ddagger_n| = \sqrt{(\dagger_{ns})^2 + (\dagger_{nm})^2} = \ddagger \sqrt{(1 - \gamma_{\dagger})^2 n_1^2 n_2^2 + (1 + \gamma_{\dagger})^2 n_2^2 n_3^2 + 4n_1^2 n_3^2}, \quad (7.6)$$

[179]

[215].

(7.9)

 $F_2^* = \sum_{r=I}^A \left(\frac{(m^r t^r)}{|m^r|} \right).$ (7.8)

"

,,

-

(7.8)
$$F_2 = \sum_{r=l}^{A} \left(\frac{(s^r t^r)}{|s^r|} \right).$$

s. (7.9), , , , . « »

, . [190] " " :

$$F_{3} = \sum_{r=I}^{A} (s^{r} t^{r}).$$
(7.10)
(7.10)

"

),

).

(

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.7).$$

$$(-4.$$

III 2 3

,

(7.13),

7.9).

(7.13),

»

_

, (.4.8,

, 3 -

right dihedra,

. .

"

.4.10.

[Hung, Angelier, 1987]. , b –

)

4.1.3.

Brune, 1968].

[204; . . -

, [185] -V

(

[Lode, 1926; Taylor, Quinney, 1931]

(

P_{ij}

(

. (7.16)

)

(7.16)

.

[Aki, 1972])

- 192 -

4.1.5.

-

[

, 1976],

(fracture shear strength)

(cohesive shear strength)

(

(friction shear strength)

[Sibson, 1974]

.

[225],

•

(8

),

1987; 229; Cloethingh, Burov, 1996]

)

. .

[Sibson, 1974; Ranalli, Murphy,

).

(

)

 $p_{fl} = gH_{fl},$ ([, 1979; 197]. , 1994; 184; [, 1996].

)

4.2.

(

8

•

,

- 194 -

_

3. () ,

- 195 -

[189, 193, 177, 168, 178, 179]

,

- 196 -

2 3

() ,

,

· · · · · · · · · · · · · · ·

1. - max. , 12, 12, 1. 3 . 2 (max) , (<45°). ,

_

;

max (2 max). max). (max 1 < 45°. 3 1. « **» »** « 1. (),)) 2. 3. (3 (1 (). 4. 2 5.). (() <45°. 6. () — max•), (() ,). (

4.3. (() 1- , 2- 3-3 1-

2 -3 ;

.

3

- 198 -

_ _

)

_

_

2,3,

- 199 -

FRG-1 TE-101.

OAN-2 (OAN-3) - OUT-1

OANS-1 OAN-1. , GARA TASSELIT, 3-5 , 10-12,5 (245- 25-30 GARA TASSELIT) 50) TAK (2-3 10), (30-35°) (2 TAK F6, F2 GARA TASSELIT (20-50°) TAK (60-80°)) • •) (GARA TASSELIT,

2 3.

2

3.

(

() () (.4.12). 2 (, . . ,2005) . 4.12.

(), F6 ()

_ • ± 10 . F6 ((Pcm).):) (-0 (min) 72,5 (max)), (**F6**. F₆ (.4.12,) 20-50 30-40. 60-80 70. , 310-320. 90-100 , (u) .4.12,) 20-50 (-30-40. 60-80 70. -

245- ,

90-100 310-320.

2

	-								
F6_bot	20-50 ⁰	200-230 ⁰	30-40 ⁰ –	210-220 ⁰	60-80 ⁰ –	240-260 ⁰	66,1	26,4	2,5 : 1,0
Fund	20-50 ⁰ –	200-230 ⁰	30-40 ⁰ –	210-220 ⁰	60-80 ⁰ –	240-260 ⁰	72,5	32,1	2,3 : 1,0
	-	-							-
			(30-4	40), ·		,			()
				(-	,		,)	35	
	(45).				,		55,	,
	245-				(2	70-90).		
4.3	.1.3.								3
				3			TAK		-
(.4	4.13,).		()		(
3D)		X	,	:	3D .	Fe	5(-)
		Pcm. F6 (-).				•	Fe
		,		·				70-100	-

70-90 (.4.13,).

,

- 203 -

70°). 90° (80-85°(). (260-270° (60-70° 100-110°) 280-290°) 30°. 0° 5°), ((10°), (20°). (90°). , 330-340°) (FMI, , FMI 330-340°) < 90°) ((_ 2 30-50°). (330-340°) FMI ((330-350°). 330-340°) FMI (, 310-330°). () (, (Drilling fractures) (Major conductive fractures), (Minor fractures) FMI, FMI (). () FMI FMI 4.3.1.6. (2), (FMI.)) (

1.

- .
 - (.4.16):

(1 -), 70-90°; (); _ 2^{-} (3 -), 340-350°; 290-310°. (), max -30-40°, -TAK _ .4.16). (_ ±10° (). , $(\alpha < 45^{\circ}).$), (() • () 1 • 350-10°) (80-100°). _ --FMI). (3. (1) (3)

> , _ , ,

,

•

,

, (-), -, , , -, , , -, -(-

).

-

.

(90-100).

- 208 -

() () (330-340).

- (10-30°), 40-60° 330-350°. 290-300° 80-90°. , , , , , , , , , ,

: 0-10°, 20-30°, 50-60° 310°, .

, , , -() Pz Mz (

), (/ -) , . . .

, (-) -() .

.

4.3.2.2.

1-3 (« »),

-2006.

,

3 2006 2007

(2005).

, , ,). .

4.3.2.3.

(

, , , , , , , , 3 , . . .

, . , , , , ,

, ,),

Pz Mz , (), , 2004 (2003-04 . .) _ () 310-350°, , (-)) () -(-.4.17). (-) (-) (_ _ • , , () 2-((_)). (_ _) 2• 1

3., 2006,

- 213 -

(Pz-

Mz)

45° .

4.3.3.

4.3.3.1.

: 20° 40°.

,

350-360°.

____12^{_1}.

• 1¹ ()

– 40°.

10-3 20-30°). 12¹ (() 350-360°.

-

20°,

).

),

,

()

1 2

_		: $_{1}(z) > _{2}(x) > _{3}(y),$	- 2 3	,	- 1
		,			-
	-	,			-
					-
	().	,	-
	,	-			-

4.3.3.3.

,

,

(.4.23-4.30).

- 220 -

-

-

, .

•

.4.25.

40

80 ÷.

> 60 Ì.

> > 40

n, (

Ą

гÌ j, -50

30 1 20

Ð

-

•

k 20 •

.4.28.

;,, *1*, .

4.3.3.3.2.

), (21 () ()): $(min/avr/max),\ :7800\ /\,15000\ /\,29000$;)) (min/avr/max), :500 /2035 /4800 ; $(\min / avr / max),$ 335°/ 2,5°/ 50°.) : 320-340 -25-30 -_ 30-40 С 40 С 50 С 40 300-305 300-305 С 30-40 320-340 20-50° (- 30°), - 300-340° (- 40°). 70° (2), (min-max) 20-50 30 70 40 300-340 30-40 ().), (15-20° (35°). 4.3.3.3.3.). (20 400 (). () : (min/avr/max), :102 / 1600 / 5155 ;)

															4.1.
	%		%			%			%			%			%
351	34,8	345	23,4		5	31,8		342	19,0		5	23,6		2	22,3
3	30,3	338	23,4		355	23,8		351	17,6		12	18,2		354	20,1
340	16,1	325	20,3		25	13,2		332	15,0		357	16,8		12	15,1
11	16,1	315	12,5		345	13,2		360	14,4		19	13,0		344	13,4
22	10,3	0	12,5		335	7,3		5	14,4		345	10,8		20	10,1
325	5,2	300	6,3		35	6,6		15	9,2		29	8,9		338	8,4
								321	7,8		35	6,0		30	6,1
								30	2,6		45	2,7		325	2,2
						·								40	2,2

,

			(min max)	
	(20-50°)	(300-340°)	(2α),	-
(70°)	90°.		,	
			max	0
			$(2\alpha = 70^{\circ})$	°)
			•	
	min max			

,

,

(r).

(±10°),

-					3		,		,
3500-4800 ;		-			2000-3500 ; 2000-4800 (.4.33)).		
	()	(20-40°)		(340-350°),	(
)			()		4.2 4.3.	X	

								4.2
3500	$10-50^{0}-$	190-230 ⁰	$20-30^{0}-$	$200-210^{0}$	$70-80^{\circ}-250-260^{\circ}$	30	15	2:1
4000	$20-50^{0}-$	200-230 ⁰	$20-30^{0}-$	200-210 ⁰	$0-10^{0}-180-190^{0}$	56	28	2:1
4500	$0-60^{0}-$	180-230 ⁰	$20-30^{0}-$	200-210 ⁰	$80-90^{0} - 260-270^{0}$	60	5	12:1
4800	$20-50^{0}-$	200-230 ⁰	$30-40^{0}-$	210-220 ⁰	$0-10^{0} - 180-190^{0}$	38	22	1,7:1

								4.3
2000	320-360 ⁰ -	140-180 ⁰	$340-350^{0}-$	160-170 ⁰	$80-90^{0} - 260-270^{0}$	78	34	2,3:1
2500	320-360 ⁰ -	140-180 ⁰	$340-350^{0}-$	160-170 ⁰	$60-70^{0} - 240-250^{0}$	118	29	4:1
3000	320-360 ⁰ -	140-180 ⁰	$340-350^{0}-$	160-170 ⁰	$60-70^{0} - 240-250^{0}$	92	37	2,5:1
3500	330-360 ⁰ -	150-180 ⁰	$350-360^{0}-$	170-180 ⁰	$50-60^{0} - 230-240^{0}$	52	35	1,5:1

•

3.

20-30°,

3

. 1.

20-40°. 20°.

_

•

•

	2.				0-10° 70	-80°.		-
	3.							-
(2	10- 2:1; 4.) 4500		3500 ,4 -12:	4000 , 4800 1.		-
			-	340)-350°		330-360°. 340°.	-
	5. 6.	50-	70° 80-9 3500 (350-3	90°. 60°) ((50-60°))	,
	7.					•		-
	0	(10-	1,5:1 4:1)		2000, 2 2500	2500 , 3000 (4:1).	3500
(8.)	()			96:33,3	3 (2,9)
46:17	7,5 (2,6). ,				(2,6-2,9)	,		
	9.			(20°,)-30°)	((≤45°).	340-350°)	-
	10.)				()	-
					·	(FMI,	TermoChannel	l, -
3300- 70° 8	11. 5300 330-360	100),)°))	(20 FMI (0-20°,	40-50°), (57,9%),	(60-
	12.	(42,1%),),	TermoC	(Thannel).	-
,	TermoCh Te	, annel ermoChann	, 79,5-8 el	31°.	(70-6 (2006)	0°) ,	(90-80°)) - - -
	13.	•						-
		,			60-70°.	() 80)-90°,

-

- 232 -

- 233 -

4.3.4.2.

()

. - 10-15 - .

-. -

, , , , , . , _ ____, , _ _ , _ _ _

4.3.4.2.

В - сдвиговый тип НДС земной коры

Палеонапряжения (до среднемиоценовые деформации)

Неонапряжения (после среднемиоценовые деформации)

.4.34. ().

3-

,

•

-

_

();

- 237 -

-

-

280°,

300-320°, 30-40°,

0-10°, 3 270-

.4.36. -

, , , () I (); 1-

- 240 -

).

- 241 -

· - ((),

max (2, 3) 1 3. (4, 5)

- 244 -

.

±10-

)

(

.

(). < 45° <45° (), (<45° $> 45^{\circ} -$),). (1 -) <45°. (< 45° $> 315^{\circ}$) (-(_),). -1 (-_ < 315° $> 45^{\circ}$ ((),) -1). - (_ >270° () $< 360^{\circ}$), (1 -315°). $> 0^{\circ}$ (<) (90° 45°). (), (_ 1 : , , , ,) ($30^{\circ} \pm 15^{\circ}$ 45° (.4.40) , , _ .4.40,) ((.4.40,), (.4.40,) , , (.4.40,). () 45° () • ()

- (.1.6). 4 **3-**

- 246 -

)

3

1 (

[200, 203, 61, 60],) (•

[137])¹⁰ (~ », (1997). . .

, [137] . , .), (

[116] .Levorsen [239],

: «... »,) $\vec{V} = -\frac{k}{\tilde{v}} \nabla P_f$, ([116] , k (. . [6]).

> , P_f () $k \quad \ddot{\mathbf{e}} P_{f}$

 $ec{V}$ (

(

[60].

5.

. .

. .

,

),

),

. .

). (()) (5.1. (,) () (,)) (, , . (50-)) ((). -() • • -

- 248 -

5.1.1.

(

(), (= pgH), -, () () () ()() ... (1978), ()... , ... <math>(1978), ()... , ... <math>()

(). « **»** . . 1000 , « 12 , = 1,2. >1, ~ » 1,2 / 3 (., 300-320 /), , 1,2, « **»**

(

0,91 1,0 .

- 251 -

--

·

().

.5.2. -

- 254 -

5.1.1.1.

) $P_{min} = P$ $(\mu / 1 - \mu).$ min , ~0,57P ~0,38P μ(0,274 0,363) ,) F₆ () (()) () (2, .), 4, 2 (1955), 1000) 500 [53].

()).

[70, 46]. () (*k*) $(G_{v}).$ $= 0.8 \quad b = 0.9 - 0.9$ = + b, *r* = 0,9. opc oe 1484925) ((. . , 1989). . .

,

(

(

(

_ >

 $1 \\ 1$

, (), -, , . . , , , ,

•		(-)	
,	: ,	•		-
		()	-

()

 1265
 .
 (2000)
 1246

 1265
 .

 7
 /
 ,

. SONATRACH (- -) -1645 (.TFT-104, TFT-507 TFT-236). -1643 (.TFT-12) , -1621 (.TFT-210). --1605 (.TFE-52) -1568 (.TFT-3).

-1545 (.TFT-235) -1643 (.TFT-2) . -1549 . , , SONATRACH, ,

(- -) (), . , . . , . . , . .

,),

(2002),

(, ,) -

(25-50 1-5 /) .

•

100-200

)

2

(

(1-5 / 25-50 / 100-200 /)

, ()

- 259 -

100

,

,

(

•

- 260 -

6. -() () () () 3 / • » [180, 186, 188] « . 6.1.

_

)

_

(). ,

•

(), .

,

- 262 -

()

() , 2, (3 max, 45°). () 3 , (_{1 2}). () [30], ($\ddagger_i = \sqrt{2/3} \ddagger \quad)$), ($_{m} = (_{1} + _{2} + _{3})/3$ т xyz. *m* (), m, , :) () 1 2; 1 ()) max; ()) 3 2 3. 70-75°, <45°, : 1) ; 2) () () ; ~90°) 3) 4) ((). () () 6.1.3. () , (()) () z), $x (P^y) = 3($ (), P^{y} (x) = 2(). 12,

$$P^{y} \xrightarrow{x}) \qquad \qquad P^{y} \xrightarrow{x} \qquad - \qquad (\overset{z}{} \\ , \\ (- \\)) \overset{z}{:} > P^{y} = \overset{x}{} .$$

- 268 -

$$\begin{array}{c} (h) \\ (h)$$

.

>1

- 270 -

(= 5) Z (= 2) *z* > $> P^{y}$ х x (P^x) $> P^{y}$ (3), (P^{y})) (2), 2,5) = 4 2 = 5,22 (= 7,02 (= *l*) _ , = 2,5). (= , =0,8)= 4,98. , (), 2. () 10 (= 2,5 (16).), = 1 7.) 90° ((-) 0°(), _ $= 0 (= 90^{\circ})$ = ($=0^{\circ}$), = $(=90^{\circ}) = 0(=0^{\circ}).$

() () ()

0° 90° (.6.2).

,

(

= 1,2 (0,48)

(2,5)

1), (.

> > min , Р

). (

- 272 -

· ()

.6.2.

(24) = 0,8, 0,98.

- 274 -

.)

(

() ()) (6.1.5. $K = Ab^3 l/S ,$ [136] -, *b* (-, *S* -, *l* -_ (*b*)), . $\times l/S$, = , -() 2 14. () 2 *(b)* 2 8), (

(, ,)

-

14

(1 2). 6.1.6. () (), () () () : ()/ ()/ () = $_{min}/P_{avr}/P_{max}$; () : ()/ ()/ () = $avr/P_{min}(P_{max})/P_{avr}$; () () : ()/ ()/ ()= $_{max}/P_{avr}/P_{min}$,

1(

).

()

, :

_

- 277 -

1 2.

(μ) (: 0,15-0,35; : 0,15-0,35; 0,18P 0,54P : 0,25-0,35), 6.) (()) (= 24 = 0,8 () 0,98. = 0,32),))) 7.) ((),). (()), (1. 2. 90° : 3. , () ().

, () ().

:

_

_

,

 7.
 (
)
 .

 8.
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 ,
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .

6.1.8.

2.

4.

(330-350°)

[,]

,

- 280 -

, xyz,T(). . . , « -« »

, 9-), - , , - , , -

[35]. , 3, (FMI),

, »,

)

)

______, ___, _____, ____, ____, _____, ____, ____, ____, ____, ___

, « ».

$$P = P \quad sin \ , P = P \quad cos \ , \qquad P / P = tg \ , \qquad tg \ - \qquad , \qquad ($$

₹_y **у**Г Р Р Р Р Р Р х х

(), ; – •

G (), tg tg tg G) , U (: G = 2 U/G.() (G) -(()) ,) () (() = 2 U/G(G). G2 U/G,) (3 () () ()

6.2.1.1.

() [30], (grad V), (G = grad A = grad V / T,T-),). ((), (*V/V*)) ((*V/V*) (. . , 1968). () (), $= b^3 l / S,$ [136]: , *b* – _ , l-, *S* –

- 284 -

$$H_i = f(G ,); L_i = f(G ,) , \qquad H_i = f(L_i),$$

 $H_i - , L_i -$

•

,
,
()
,
(35)
,

$$(35)$$

 (35)
 (35)
 $(-8(6), -11(5), -23(21), -1(3).$
 $(-8(6), -23(21), -1(3).$
 $(-11(5), -23(21), -1(1).$

:

_

.6.4.

(

(),

).

,

_

- 287 -

,

)

(

.6.6.

),

(.6.7).

(.6.8.).

95%),

7.1.1.

800), (1000 . 2-(-()) 20-80% (.) 50-100% (.). (), () (.7.1): $A_{max} = +(n-1) \times b$, b : = 8 × 0,05 / ² 10 / , **b** = 6 × 0,05 / ² 5 / _ _ ; n –). (38 ×0,05 / ² – (35 / _). (), $= 0,535 \qquad {}_{N1}^{2} + 125, \\ {}_{N1}^{2} = 0,175 \qquad .1 + 350,$ -I () () :) ;) ;)

,

)

(

(T)

- 296 -

-	-	- (+PZ)	- (T+J)	(J)	- (J+K)	(К)	
()		, , , , , , , , , , , , , , , , , , ,	10.40	40.44		40.40	. 10
	< 4-6	6-10	10-12	12-14	14-16	16-18	> 18
, /							
-	< (-50)	(-50)-0;	0-50	50-	150-	200-	> 250
,		(-200)-(-100)		150	200	250	
-	< 50	50-100	100-	150-	200-	250-	> 300
,			150	200	250	300	
1	< 500	500-	750-	1000-	1250-	1500-	> 2000
$/^{2}(R = 5)$		1000	1250	1250	1750	2000	

					6-10	
.).		(-	,	,	, 10 12 .).	, _ _
,	.).		12 14	ł		(, - 14-16, - (, , -
.,). 16 (,).		-	
-	,	,),		- 0,2%	-
	-		,			-

(.7.2).

-), ().) ().) (,) (

- 298 -

7.1.2.2. -

(

. -. ()

, , . (, , -) , -

$(lg Q = +b \times lg \mathcal{V}),$

,) , () , 2/3

[52, 156],

- 302 -

.7.4.

[52, 156].

- 303 -

+

7.1.2.6.

7.2

				7.2
- ()	_	-	-	
- ,	< 30	80-140	100-160	>160
, /	<2	2-6	3-8	>8
-	0,0 %	27,0 %	67,3 %	0,0 %

:

(.7.2)

(

.7.1),

(

_

7.1.2.7.

,

160 0-47 /)[39].

200 875) 40 80 / .

[67].

_

7.2.

(

)

()

- 307 -

)

)

, . – ,

, ,

7.2.1.

- , , . . () . (1), (2).

.7.6.

(

()

,

, . ,

- 312 -

() .

.

(0,24-0,40) => T+J (0,40-. e): PZ, / . ($0,48) \Longrightarrow J(0,48-0,56) \Longrightarrow J+(0,56-0,64) \Longrightarrow$ (0,64-0,72). 0,24 0,72 () ()) (() (). (:) () -, () -()) – () (

7.3.

(

)

), (

),

(

()-

(

(100%)

(),

)

.7.8

(

(

6979900

12060333

)

Контурная карта -

= 2,0%).

= 1),

. 7.8.

. 7.9.

.

(

)

- 315 -

7.4.

7.4.1.

.7.10

;

 $k \qquad Gv k = f(Gv)$

- 317 -

, B	ooac e	е,			
	,			,	·
-	,	, , ,	2		
			,	, B	

7.4.3.

_

, , , , ,

, . .

$$(. . , 1972, .), , , ():$$

$$= 7,4 + 4, n - , , n - ; - , 59 79 - ...$$

,

.

-

1. : 2. , 3. , 4. • • 5. 6. 3-, 3-• 7. 8. , 2 /3 9. () , 10. () . , 11.

_

,

12.

1. 1. . ., ,2004,560 . . - .: . ., . . 2. . . , 2002, 288 . 3. : . , 2008. - 221 . . .: 4. . . . -« », M., 1, c.24-25. 5. . . 1.1962. .1471–1483. // , . 6. . ., . ., , 1984. 7. . 8. .2007.22 . ..- . . .: , 1962.-. . 2-608. , 1989, 382 . 9. 10. . . · ., • •, . 1997. 325 . . .: 11. . 1990. 2. . 16–29. // . . 12. // , . 33). .: . 1992. . 18-27. (13. . .,) . 2001. . 377, 1. (. 72-75. 14.840. . 1999. 70 . 15. . .). -(: .-.: ,2006, .69-70. 16. . . : : . -.-.: ,2006, .71-73. 17. . ., //: . 2000. . 281–295. 18. // . . . , . 2. 1961. . 261–263. 19.: . 1969.136 . 20. . ., ». ., • •, . . ,2007.-186 . 21. . . .: ,2007,456 . 22. . ., . ., I -2007. , 2007, .26. · ., · . .-. ., .-23. ~ **»** ,2003, -II, .209-212. « 24. « » ,2003, -II, .209-212. « 25. . ., -

. .,

// 26. • ,2007, .338-341. ~ ». 27. (.76. ., , 1971, 208 .). 28. ,2000, .60-116. . . ».– .: ~ 29. // . . . 1954. 3. 390-410. . 1975. - 536 . 30. .: . 31. // . 1984 . 6, 3. . 3–10. 32. • • , 1987, 4. 33. // . . , 2006, 10, .72-78. 34. . . · ., . -: : - ,2006, .62-67. 35. ,2007, 3 c.3-11. 36. · ., . . 75 , 2004, c.196-208. ~ ». 37. . ., -I», 2002, 54-61. « " 38. .: . ., ", 2005. 496 . 39. 1980, 1. 40. ()// . 1975. 225, 3. . 557–560. . 41. . // . 1979. . 7–25. . .: 42. . . // .: 1981.21 . 43. . . () // : 1982. . 35–52. 44. . ., // . .: . 1979. . 60–66. 45. ••)// _ - .: 1974. . 5–8. 46. , 1987, 223 // .). 47. : -.1961.47 . 48. , 1979, . 248-251. .: •• 49. • •, . .,

1484925.

21 B 47/06.

08.02.1989. 18.08.1986. -Заре срроао 4110893/23-03 50. , 1985. 219 . . . · ., // 51. . 1987. . 164–170. .: . 52. : .// . . . – ~ ,2004, .11-17. », ., 53. ,1970.-288 . .: . . . 54. . – 2, 1985, .3-8. 55. , 1978, 56. , 1985, 264 . · ·, 57. ,1988,25. . .- . .. 58. . 1984. 3. .43–55. 59. / .-1970. – 6.- .3-14 60. . . , 2006, : .85-104. 61. . . , , 4, 1996. 62. ,1986.-50 . .- .: . . 63. _ . . (). – … , 1988, . 13-19. .- .: 64. ,2007.-354 . .- .: 65. .// .: ,1975.173 . . . ,1971.407 . 66. . .: . . 67. (. .: ,1974,183 .). . . 68. •••, . . . 1987. 1. . 3-25. . . 69. (). – ,2005,412 . 70. · ., . . В Зо, 11, 1990, c.76-82 (. -. B.B. ap e). 71. • •, , , 1988, 252 . 72. · ., . . . 1988. 230 c. . : . 1965.210 . 73. . .: . . 74. ,2000.-350 . .: ./ 75. : _ . . _ ,1998 . · ·, 76. , .49. ., , , 1973,

440.

77.	,	,	0			-
		1982		-		-
78.	• •,	, 1962.				
`	-		C 1005 - 112 1	17	(-
) 79.	AH ,	,	6, 1985, c.113-1	17. «	» (-
)//	,	,	,	, .	
2000	204 209		(XLI		.). 1:
, 2008. 80.	204–208.					-
-	,	•		, 4,2007,	.13-18.	
81.				:	11	-
		:	, XXIX			
	:	, 1996, .100				
82.	•••,	• •,	•••	,		1075
C.9–21.			.//			1975.
83.		-				(
	-).				-
84.	•		., 2005, 42 .			
0.1	:	, 2007, .471-5	04			
85.					•	. 2002, 6, .3-4.
86. 1960	, 265-333		//			: .
87.					.: , 1975. 1	76
88.			1000 001		-02	:
89		//	. 1993. 331,	4 500–5	»03.	
07.	: 1	997. 68 c.				,
90. 01					: ,	1936280 .
91. 1962 8 '	 74-78				.–	
92.	,	· ·,				
		Ι	-			-2007
,20 93	07, .26.				_	_
		7,2004, .18-25.				
94.	,					-
95	• •	,1977,	5, .22-37.			
<i>))</i> .	• •,				1. 19	74. C. 22–26.
96.	,	•••				-
97		// .		. 1977. 1	154–67.	(-
<i>)1</i> .	• •):		, 1962. 392 .		(
98.		10.50				-
QQ	, .2	, 1950.				
.//	· · · · · ·	. 1977. 12. C 1	13–127.			-
100.					,	1992. 294 .
101	• •			:	. 1991. 151 .	//
	. 1985. N	 1.				// •
102.				.: ,	, 2007 192 .	
103. , 1,2004, .9-12. . 104. -// . . 3-4 .155-165. . – 105. : ,2004.-526 .(. . 543). .: 106. ./ , ,2005, .470-472. . .: 107. // . . . • • ,2005, .470-472. .: . 108. // . . . -_: ,2005, .469-470. 109. ,2004.141 . // . . : -. . . // . . 110. , 1,2004, .48-72. . . -, , 1987. c.74-119 111. . .: · ., . . 112. // . 1981. 260, . . 3. . 695–698. 113. .// . 1984. 1. C. 60-72. 114. - . ,1981. . . , 1975, 5, .3-17 115. . . . 116. _ . . . 2005. 41 .: . .- . . . 1987. 117. .: , 1992, 148 . 118. . ., 119. . -. . , 1963, 3, .18-40. 120. . . , 1963, 4, .24-42. 121. // 12,2006, .20-23. . . , 122. . . •• , 1997, 55. 123. . ., .: . . , 1992.-223 . 124. . . , 1986, 30 . 125. (2,). -,2005, .3-16. 126. . 1963. // . . 312 .(. 80). . 127. -•• . . ,2004,270 . // 128. . . . 1982. . 267, 4. . 904-909. 129. . . -// . 1987. . 171–181. . .: 130. . .: ,1970.160, 131. . .

132. · ., 26.12.2004. // . 2006. 47. 11. . 1192-1206. // 133. . 1965. . . .: . . 56-63. 134. . . // _ , 1997. .1, .80-109. 135. . . 1997. - 591 . . ,1985.240 . 136. . .: . . 137. : . . : ,2006, .105-119. 138. , 1979, .247, 4. 139. : . . , . . , 2003, / . . . --II, .119-126. « 140. .: . 1991. 141. . . ().// . 1987. . 151–158. . .: 142. . . . 1996. 41 . ..-... 143., . ., ., ,2003,352 . 144. . .: , 1974. 200 . 145. .// I,II //, 1995. 10. . 26–46. 146. - , // . . , 7,2004, .26-37. 147. ,2001.-480 . .: . . 148. 1714106. 21 B 26.12.88. 47/04. Заре срроа о . . 4625666/03. . 149. .// . .: . 1979. . 67–71. 150. . 1979. 144: 151. . .: . 1977. - 144 . . . 152. , 1972, 170 . / . . . , , 153. (). -, 1, 1990, c.37-43. В Зо, 154. . . , 4,2004, .52-60. 155. . ., , 1981, 143 . 156. : .// . . , . . . « . – ,2004, .89-90. », ., .www.web.ru/~tevelev/index.htm 157. . . 158. () 8 1991 // . ., • •,

. . .: 1993. . 1. . 74–88. 159.). - .: ,2002.-436 . (. . 160. , 40-, 2008. .- .: . . 161. 1978. 6. . 3-15. // 162. // . 1984. 9. . 69-77. 163. // « ».4 2000. 164. _ . . 3 // 75 . 2004. . c.128-139. 165. . . . 2004, .292-297. 166. . .)// VIII 3 (_ . 2007. . 355-358. 167. : : - ,2006, .258-262. 168. . 1985. 7. .108-118. // 169. G 01 V 1/40. 3ape c p po a o1676359. 08.05.1991. 4619282/25. 26.09.1988. 170. . . (). -, 1986, 164 . , 171. AH CCCP, .309, 6, 1989, c.1438-1442. .-172. . . . -4, 1993, .17-21. 173. . . , 2004, 4 c.39-51. VIII 174. « 60-», .: ,2005, .448-451. 175. . . , 1, 2006, c.32-44. 176. : ,2006, .254-258. .: 177. (. AH . 1984. 3. c.78-81. -). – . 178.)// . 1985. 1 c.9-16. (179. 1, 1989, c.69-79. 180.

75

c.128-139.

3 //

- 327 -

. 2004.

.

.

181. . . 3 ()// VIII . 2007. . 355-358. . . 182. . . . -: ,2006, .258-261. .-.: 183. . -,2007, .31 . .: . 184. . . « _ ,2007, .238-239. » •• 185. 4,2007 .49-60. 186. . . 3, () – • 2008, .41-60. 187. . « _ ,2007, .239-240. ». ., 188. _ : - ,2006, .262-268 189. . . , 1981, c.2-4 190. (3, 1984, c.78-81. AH -). -. 191. 1, 1989, c.69-79. 192. ~ ». 40-,2008, . . ., 193. •• ,2007, 6 .2-10. 194. , 2, 1985, c.24-29. -195. . 8,2002, .138-143. 196.,2002.224 . .: 197. _ . . •• _ . -, , 11,2001, .43-46. 198. // 5,2004, .37-43. . •• 199. // , 5,2004, 37-43. . 200. ., , 1981, 435 . •• 201. / . . , • ,2005, .470-472. .: 202. // . . , ,2005, .470-472. .: •

203.	:
.,	,2006,283 .
204.	
	· · ·
,	3-4 .
205.	
• • •	». M., , 2004, 1, c.5.
206.	
207.	, , , 2005, 560 .
208.	
	4, . 1994, 5, .3-12.
209.	
	. ,, .XXI, .3, 4, 1956.
210.	
011	, , 5,2004, .44-50.
211.	
212	,2004, 5, .44-50.
212.	
212	. , 12,2000, ./9-01.
213. 214	
∠14. ·	1081 176
215	, 1901, 170
213.	1991 - 262
216	
//	
217	
-	//
218.	······································
	,
219.	
220.	
	1979 14-23

221. Ajia G., Suyun W., Yurui H., Zhonghuai Xu, Tectonic stress field of China inferred from a large number of small earthquakes // J. Geopys. Res. 1992. V 97. N B8. P. 11867–11878.

222. Aleksandrowski P. Graphical determination of principal stress directions for slicken side lineation populations: an attempt to modify Arthaud's method // J. Struct. Geol. 1985. N 7. P. 73–82.

223. Anderson E.M. The dynamics of faulting. Edinburgh, 1951.

«

224. Angelier J. Inversion field data in fault tectonics to obtain the regional stress - III. A new rapid direct inversion method by analytical means // Geophys. J. Int. 1990. V 10. P. 363–367.

225. Angelier J. Sur l'analyse de mesures recueillies dans des sites failles: l'utilite d'une confrontation entre les methodes dynamiques et cinematiquues // C. R. Acad. Sci. Paris. D. 1975. V 281. P. 1805–1808.

226. Angelier J., Hung Q. Inversion of field data in fault tectonics to obtain the regional stress - II. Using conjugate fault sets within heterogeneous families for computing paleostress axes // Geopys. J. 1989. N 96. P. 139–149.

227. Angelier J., Mechler P. Sur une methode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: la methode des diedres droits // Bull.Soc.geol.France. 1977. V XIX, N 6. P. 1309–1318.

228. Angelier J., Tarantola A., Valette B., Manoussis S., Inversion field data in fault tectonics to obtain the regional stress - I. Single phase fault populations: a new method of computing the stress tensor // Geophys. J. Res. astr. Soc. 1982. V 69. P. 607–621.

229.Arthaud F. Methode de determination graphique des directions de raccourcissement, d'allogement et intermediare d'une population de failles // Bull. Soc. geol. Fr. 1969. V 7. SII. P. 729–737.

230.Arthaud F., Choukrone P. Methode d'analyse de la tectonique cassante a l'aide des microstructures dans les zones peu deformees. Exemple de la Plate-Forme Nord-Aquitaine // Revue de l'Institut Francais du Petrole. 1972. XXVII, N 5. P. 715-732.

231.Becker G.F. Finite homogeneous strain flow and rupture of rocks // Bull. Geol. Soc. America. 1893. V 4.

232.Bridgman P. W., Reflections of a physicist, 2 ed., N. Y., 1955

233.Bruneier B., Carey E. Analyse theorique et numerique d'un modele mecanique elementaire applique a l'étude d'une populaton de failles // C. R. Acad. Sci. Paris. D. 1974. V 279. P. 891–894.

234.Byerlee J., Voevoda O., Myachkin V., Summers R. Structures developed in fault gouge during stable sliding and stick slip // Tectonophysics. 1978. Vol. 44. N 1-4. P. 161-171.

235.Carey-Gailhardis E., Mercier J.L. A numerical method for determining the state of stress using focal mechanisms of earhquake populations: application to Tibeetan teleseisms and microseismicity of Southern Peru // Earth and Plan. Sci. Let. 1987. V 82. P. 165–179.

236.Etchecopar A., Daignieres M., Vasseur G. An inverse problem in microtectonics for the determination of stress tensor from fault striation analysis // J. Str. Geol. 1981. V 3, N 1. P. 51–65.

237.Gephart J.W., Forsyth D.W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. // J. Geoph. Res. 1984. V 89, N B11. P. 9305–9320.

238.Govers R., Wortel J.R., Cloethingh S.A.P.L, Stein C.A. Stress Magnitude estimates from earthquakes in oceanic plate interiors // J. Geophys. Res. 1992. V 97, N B8. P. 11749–11759.

239. Levorsen A.I. Geology of Petroleum. W.H.Freeman and company, San Francisco & London, second edition. 1967

240.Lisle R. New method of estimating regional stress orientations: application to focal mechanism data of recent British earthquakes // Geoph. J. Int. 1992. V 110. P. 276–282.

241.M.Naylor at al. Fault geometries in basement-induced wrench faulting under different initial stress states. Journal of Structural Geology. 1986. Vol. 8, No.7, p. 737-752.

242. Mads Huuse. Detailed morphology of the Top Chalk surface in the eastern Danish North Sea/ - Petroleum Geoscience, Vol.5, 1999, pp. 303-314.

243.Marfurt Kurt J. and Kirlin R. Lynn. 3-D broad-band estimates of reflector dip and amplitude. Geophysics, Vol. 65, No. 1 (January-February 2000), P. 304–320.

244.McKenzie Dan P. The relation between fault plane solutions for earthquakes and directions of the principal stresses // Bull. of the Seism. Society of America. 1969. V 59, N 2. P. 591–601.

245.Michael A.J. Determination of stress from slip data: faults and folds // J. Geophys. Res. 1984. V89, N B13. P. 11517–11526.

246.Satnser Chorpa, Kurt J.Marfurt. Volumetric curvature attributes for fault/fracture characterization. First break, 2007, 5, p.35-46

247.Sigismondi Mario E., Soldo Juan C.. Curvature attributes and seismic interpretation: Case studies from Argentina basins. The Leading Edge, November 2003.

248.Sylvester A.G. Strike-slip faults. // Geol. Soc. Amer. Bull. 1988, vol.100, p.1666-1703

249. Timurziev A.I. White Tiger field fracture system analysis. Abstracts of the International Conference «Fractured Basement Reservoir». Vungtau, 15-16 November, 2006, Vietnam, p.49-50.

250. Timurziev A.I., Gogonenkov G.N. Interpretation of Basement's Strike-Slip Fault Structures – the Key to the Stress-Strain Condition Reconstructions in Modeling Fractured Reservoirs. Abstracts of the International Conference «Fractured Basement Reservoir». Vungtau, 15-16 November, 2006, Vietnam, p.50-51.

251. Total Petroleum Systems of the Illizi Province, Algeria and Libya-Tanezzuft-Illizi. By T.R. Klett U.S. Geological Survey, Bulletin 2202–A U.S. Department of the Interior U.S. Geological Survey.http://greenwood.cr.usgs.gov/pub/bulletins/b2202–a/

252.W.Hamilton and N.Johnson. The Matzen project – rejuvenation of a mature field. - Petroleum Geoscience, Vol.5, 1999, pp. 119-125.

253. Wilson J.T. A new class of faults and their bearing on continental drift // Nature, 1965, 207, p.343-347

254. Woodcock N.H. The role of strike-slip fault systems at plate boundaries // Phil. Trans. R. Soc. London, 1986, A 317, .13-29

255.Zobak M.L. First- and second modern pattern of stress in lithosphere: The World stress map project // J. Geopys. Res. 1992. V 97, N B8. P. 11703–11728.