—— ГЕОХИМИЯ ——

УДК 550.4:552.578.2

ЭЛЕМЕНТЫ-ПРИМЕСИ КАК ИНДИКАТОРЫ ГЕОДИНАМИЧЕСКИХ ОБСТАНОВОК НЕФТЕНАКОПЛЕНИЯ

© 2010 г. Р. П. Готтих, Б. И. Писоцкий

Представлено академиком А.Н. Дмитриевским 14.12.2009 г.

Поступило 23.12.2009 г.

С развитием геодинамических подходов к оценке перспектив регионов на обнаружение тех или иных полезных ископаемых трансформируются и взгляды исследователей в области нефтяной геологии. В отличие от традиционных взглядов, рассматривающих процессы нафтидогенеза в геологических разрезах лишь как следствие простого погружения и кондуктивного прогрева осадочных толщ, содержащих переменное количество органического вещества, к наиболее благоприятным обстановкам для нефтегазообразования и нефтегазонакопления в настоящее время относят субдукционно-обдукционные либо обстановки пассивных окраин континентов. Пассивные окраины на начальных стадиях геодинамического развития испытывают рифтинг с сопутствующим апвеллингом астеносферы, последующей коллизией и образованием надвиговых деформаций в пределах перикратонных погружений [1]. Вместе с тем практически все исследователи полагают, что для мобилизации микронефти в скопления необходимо учитывать и эндогенный фактор, а именно воздействие на породный субстрат глубинных флюидов, представляющих собой либо газовые эманации высокостоящих астенолинз, либо эманации остывающих в консолидированной коре магматических расплавов. Представленные взгляды составляют некоторые аспекты разрабатываемой концепции полигенеза нафтидов [2].

На основе имеющихся материалов [3], дополненных новыми данными, осуществлена попытка использования геохимии для идентификации некоторых источников вещества в нефти (табл. 1).

В работе [4] выведены канонические отношения элементов-примесей в базитовых магмах различных геодинамических обстановок, различаю-

Всероссийский научно-исследовательский институт геологических, геофизических и геохимических информационных систем, Москва

Институт проблем нефти и газа Российской Академии наук, Москва щихся поведением летучих компонентов и соотношением между малыми элементами в расплавах. Выведение аналогичных отношений для нефти связано с рядом трудностей. Прежде всего это относится к отсутствию достаточно полных данных по геохимическому составу нефти. Сложившаяся ситуация объясняется использованием ранее низкочувствительных методов анализа зольных остатков нефти, что предопределяет существенные потери элементов при подготовке проб и определении узкого круга металлов. Не представляются удачными и попытки изучения сырой нефти методом ICP-MS, поскольку концентрация элементов и, соответственно, соотношения между ними в значительной степени будут определяться процентным отношением между практически не металлоносными углеводородными соединениями (от 70 до ~98% нефти) и асфальтово-смолистыми компонентами – концентраторами микроэлементов [3].

Следующая трудность заключается в том, что если ввести в качестве мобилизующего фактора в процесс нефте- и газоконденсатонакопления эндогенные флюиды, то остаются неизвестными коэффициенты фракционирования элементов в системах расплав (порода)—флюид при инверсии редокс-потенциала последнего. Как известно, кристаллизационная дифференциация магм приводит к селективному обогащению остаточного расплава элементами-примесями, которые практически не входят стехиометрически в формулы минералов и, концентрируясь во флюидную фазу, несут информацию о петрохимическом составе источника.

В связи с этим на основе имеющихся геохимических данных нами построены графики, демонстрирующие принципиальный характер распределения элементов в системах "магматиты различного петрохимического состава и генетически связанные с ними битумы – продукты дифференциации отделяющихся от кристаллизующихся расплавов постмагматических флюидов" [5–7]. Правомочность подобных построений обусловлена, помимо геологических материалов, также и

Таблица 1. Средние содержания некоторых элементов в смолисто-асфальтеновых фракциях нефти (мг/т)

Фракция	Ti	V	Mn	Fe	Y	Zr	Nb	La	Yb	Та	Th	Tl	Pb	Bi
1(7)	9724	28370	955	150480	11	1275	2.7	46	0.9	0.66	15	1.62	1130	17
2(9)	2061	6109	724	141825	10.4	547	5.0	25	0.7	0.68	3.3	1.43	2248	31
3(7)	3241	61635	1435	259947	21.7	605	9.9	87	8.4	0.63	6	2.15	4758	100
4(7)	3545	26190	2965	54276	20.2	328	8.3	51	2.3	0.13	6.2	1.88	16530	29
5(3)	4246	7824	985	65991	15.3	381	9.0	48	1.3	н/о	4.9	5.7	846	35
6(7)	5243	227600	1728	109582	16.9	352	13.5	40	1.5	1.01	5.2	1.69	2009	133
7(4)	19688	1419485	3776	162368	563	1755	41	9.13	1.4	3.5	32.7	18.49	10750	95
8(4)	6801	1725991	723	н/о	54	298	11.8	50	4.9	1.1	12.3	6.97	245	21

Примечание. Нефти: 1 – Днепровско-Донецкой впадины; 2 – Восточной Сибири; 3 – Тимано-Печорской провинции; 4 – Западной Сибири; 5 – Сахалина (месторождения: Мирзоева, Нижние Даги, Пильтуно-Астохское); 6 – Южно-Татарского свода; 7 – битумоиды доманикового горизонта Южно-Татарского свода; 8 – битумоиды баженовской свиты Сургутского свода. В скобках – количество проб; н/о – не определялось или ниже порога обнаружения.

идентичностью изотопных составов неодима битумов и магматических пород.

Анализ принципиальной тенденции распределения микроэлементов в системах расплав с отличным источником выплавления (порода) восстановленный флюид (битуминозные вещества) показал переход во флюидную фазу широкого спектра малых элементов, но с различающимися коэффициентами распределения (рис. 1). В системе ультращелочная порода-битум во флюидную восстановленную фазу предпочтительно переходят V, Mn, Sr, Y, Nb, Mo, Ba, Ta, Tl, Pb, Th, U. В системе щелочно-ультрамафитовая порода-битум сохраняется тенденция перехода во флюидную фазу V, Mo, Tl, Zn и Bi. Причем в ультращелочных парагенезисах коэффициенты распределения в среднем на один-полтора порядка выше. В контрастных соотношениях проявлено поведение Ва, Та, Рb, Th и Bi. Отлично и поведение редкоземельных элементов. Так, в ультращелочных системах в отличие от щелочноультрамафитовых HREE в большей степени перераспределяются во флюидную фазу. В этом отношении ультращелочные системы близки к системе мафиты нормальной щелочности-битум, где также отмечается переход тяжелых лантанидов во флюид. В отличие от ультращелочного парагенезиса во флюидную фазу кристаллизующихся базальтов преимущественно переходят в значительных количествах наряду с Со и Ni также Ga, Cs, W, а V, Та и Th предпочтительно накапливаются в породе. Распределение микроэлементов в системе щелочной базальт-битум носит отпечатки распределения элементов в уже рассмотренных системах, несмотря на иногда значительную разницу в величине самих коэффициентов. По сравнению с системой базальт нормальной щелочности-битум резко отлично поведение Со, Сѕ, Ва, REE, но сохраняется относительное накопление во флюидной фазе W, Pb и Bi.

Относительный, принципиальный характер рассмотренных соотношений определяется, помимо ограниченного количества данных и тем, что по мере удаления от источника, т.е. с падени-

Рис. 1. Логарифм значений коэффициентов распределения микроэлементов в системах: толеитовый базальт-битум (ряд 1), щелочной базальт-битум (ряд 2), хибинит-битум (ряд 3), кимберлит-битум (ряд 4).

ДОКЛАДЫ АКАДЕМИИ НАУК том 433 № 4 2010

Рис. 2. Дискриминационные диаграммы Ni–V–Ti и Pb–Tl–Bi для нефти. Нефти (значки): *1* – Восточной Сибири, *2* – Днепровско-Донецкой впадины, *3* – Западной Сибири, *4* – Южно-Татарского свода, *5* – Тимано-Печорской провинции, *8* – Сахалина; битумоиды: *6* – доманикового горизонта верхнего девона, *7* – баженовской свиты верхней юры.

ем температуры и давления, флюиды расслаиваются. В продуктах расслоения флюидов — битумах по мере уменьшения степени конденсированности веществ происходит и дифференциация их микроэлементного состава, определяемого устойчивостью элементоорганических комплексов.

Парагенетические взаимоотношения мантийных и коровых процессов показывают, что в нефтегазоносных регионах могут быть совмещены проявления разновозрастного и разноглубинного мантийного магматизма с отчетливо выраженной тенденцией увеличения со временем глубины мантийных выплавок с возрастанием их щелочности в направлении от толеитового до щелочно-мафитового. В условиях длительного существования мантийной флюидно-магматической системы при ее активном взаимодействии с вмещающим субстратом могут возникать восстановленные металлоносные флюиды, участвующие в процессах нефтенакопления.

При анализе геохимического состава нефти с целью выделения индикаторов глубинных систем, помимо близости ионных радиусов элементов, учитывались коэффициенты распределения и характер согласованного или не согласованного поведения элементов-примесей в системах расплав (базальт) – флюид (битум). Использование усредненных составов нефти при построении дискриминационных диаграмм определяется тем, что разброс данных даже в пределах одного региона может определяться различными геодинамическими режимами становления блоков коры в его пределах. Кроме того, на вариации геохимического состава нефти могут оказывать влияние и процессы контаминации рассеянным в осадочных породах органическим веществом, ве-

ДОКЛАДЫ АКАДЕМИИ НАУК том 433 № 4 2010

ществом более ранних продуктов дифференциации восстановленных флюидов, близостью отбора проб к зонам разломов и др.

Формат статьи позволяет привести лишь две диаграммы для нефти пяти регионов, по которым выполнен наибольший объем исследований [3]. Из диаграмм следует, что по соотношению между средними содержаниями различных элементов нефти существенно различаются между собой (рис. 2). Так, составы нефти Днепровско-Донецкой впадины (ДДВ) и Восточной Сибири (ВС) близки между собой, нефти Западной Сибири (ЗС) и Южно-Татарского свода (ЮТС) Волго-Уральской провинции разобщены, а нефти Тимано-Печорской провинции (ТПП) занимают промежуточное положение между нефтью ЗС и ЮТС. Выявленные закономерности явно не случайны и могут отражать особенности протекания в регионах процессов с участием магматитов различного профиля и сопутствующих им флюидов. На измененную для нефти диаграмму Ti-Zr-Y, предложенную Дж. Пирсом и Дж. Канном [8] для реконструкции геодинамических обстановок формирования базальтов, нанесены средние составы рассмотренных нефтей, включая полученные данные по сахалинскому шельфу и данные по битумоидом из толщ, обогащенных органическим веществом (баженовская свита и доманиковый горизонт). Как следует из рис. 3, нефти ДДВ и ВС попадают в область развития внутриплитных базальтов, нефти ТПП – в область известково-щелочных базальтов, нефти ЗС в область толеитов и известково-щелочных базальтов, и, наконец, нефти ЮТС - в область развития толеитовых базальтов. Точки составов битумоидов из доманикового горизонта и баженовской свиты резко сдвинуты по отношению к нефти. Состав нефти сахалин-

Рис. 3. Дискриминационная измененная диаграмма Ti-Zr-Y [8] для нефти и органического вещества (условные обозначения см. на рис. 2). А – толеиты островных дуг, В – островодужные толеиты, извест-ково-щелочные базальты, D – внутриплитные базальты континентов, С – известково-щелочные базальты.

ского шельфа ложится в область островодужных толеитов и известково-щелочных базальтов.

В отличие от работы [9], в которой подразделение нефти осуществлялось на основе соотношения между транзитными элементами, нами выведены некоторые отношения элементов-примесей с использованием преимущественно высокозарядных элементов, применяющихся для оценки источников базитовых магм [10, 11]. Как следует из табл. 2, практически все отношения микроэлементов имеют тенденцию к уменьшению или увеличению от средних составов нефти ДДВ и ВС к нефти других регионов. В скобках представлены отношения элементов-примесей во включениях базальтов внутриконтинентальных обстановок и средние отношения во включениях базальтов островных дуг и активных континентальных окраин по [12]. Как полагают авторы [11], наиболее вероятная разница в отношениях Zr/Y и Zr/Nb связана с гетерогенностью долгоживущих родоначальных магматических источников, выражением чего являются проявления магм различного петрохимического состава. Перемежаемость базальтов с различным содержанием К₂О и, соответственно, различным содержанием некогерентных элементов, возникающих, по мнению [13], в связи с продолжительностью взаимодействия мантийных флюидов и расплавов в открытых системах, насыщенных летучими, при их подвижном поведении установлена в геологических разрезах Сибирской платформы. На основе предложенной логики и истории становления земной коры рассматриваемых регионов положение точек на диаграмме Ti-Zr-Y выглядит закономерно. Отношение таких несовместимых элементов, как торий и иттербий, должно сохраняться неизменным в ходе процессов частичного плавления и фракционной кристаллизации. Но как следует из рис. 1, по сравнению с торием фракционирование иттербия во флюидную фазу определяется петрохимическим составом базитов, что и сказывается на Th/Yb-отношении в нефти. Характером распределения флюид-расплав можно объяснить и изменение отношений Nb/Ta и Ti/V, хотя вариации последнего связывают иногда с различной формой валентности ванадия в магмах по сравнению с титаном. Отношение La/Yb в нефти, с одной стороны, может отражать степень щелочности источников флюидов, с другой, - степень дифференцированности лантанидов во флюидах и, таким образом, характер миграции восстановленных систем по трещинно-поровому пространству в изменяющемся поле давления. Величина отношения Fe/Mn определяется разделением элементов в постмагматических процессах и зависит от количества воды во флюидах, степень которого существенно возрастает в магмах ост-

Отношения элементов	1	2	3	4	5	6	7	8			
Zr/Y (20.1/2.1)	115	51	28	16	25	21	3	6			
Zr/Nb (5.4/33.7)	470	109	61	40	42	26	43	25			
Th/Yb (1.8/0.5)	17	5.0	0.7	2.6	3.8	1.5	0.8	1.0			
Nb/Ta	4	7	16	64	_	13	12	11			
La/Yb	51	36	10	22	37	27	6.4	10.0			
Ti/V	0.34	0.34	0.05	0.14	0.5	0.02	0.01	0.004			
Fe/Mn	158	196	180	18	67	63	43	_			
Ru/Ir	3.2	0.84	1.03	2.5	2.6	0.16	_	_			

Таблица 2. Отношения элементов в нефти различных регионов

Примечание. 1–8 – регионы (подписи к таблице 1); в скобках: отношения элементов в базальтах внутриплитных обстановок/в базальтах островных дуг и активных континентальных окраин по [4, 12].

ДОКЛАДЫ АКАДЕМИИ НАУК том 433 № 4 2010

ровных дуг и активных континентальных окраин [14]. Отношение Ru/Ir в нефти, выведенное в [15], отражает, по-видимому, систематику нефтяных месторождений по платинометальности.

Таким образом, приведенные материалы дают основание полагать, что в нефти различных регионов присутствует эндогенная составляющая, а использование элементов-примесей позволяет выяснить геодинамические обстановки становления земной коры нефтегазоносных провинций и формирования скоплений углеводородов в их пределах.

Работа выполнена в рамках Программы № 14 фундаментальных исследований Президиума РАН: "Научные основы эффективного природопользования, развития минерально-сырьевых ресурсов, освоения новых источников природного и техногенного сырья".

СПИСОК ЛИТЕРАТУРЫ

- 1. Хаин В.Е., Левин Л.Э. // Геология и геофизика. 2001. Т. 42. № 11/12. С. 1724—1738.
- 2. Дмитриевский А.Н. // ДАН. 2008. Т. 419. № 3. С. 373–377.
- 3. Готтих Р.П., Писоцкий Б.И., Журавлев Д.З. // ДАН. 2008. Т. 422. № 1. С. 88–92.

- 4. Коваленко В.И., Наумов В.Б., Гирнис А.В. и др. // ДАН. 2009. Т. 426. № 2. С. 222–225.
- 5. Готтих Р.П., Писоцкий Б.И., Журавлев Д.З. // ДАН. 2004. Т. 399. № 3. С. 373–377.
- 6. Готтих Р.П., Писоцкий Б.И., Кулакова И.И. // ДАН. 2006. Т. 407. № 1. С. 82-87.
- 7. Готтих Р.П., Писоцкий Б.И., Васильев Б.Д., Журавлев Д.З. // ДАН. 2006. Т. 410. № 6. С. 804–808.
- 8. *Pearce J.A., Cann J.* // Earth and Planet. Sci. Lett. 1973. V. 19. P. 290–300.
- 9. Пунанова С.А. // Геохимия. 2004. № 8. С. 893-907.
- 10. Pearce J.A. // Lithos. 2008. V. 100. P. 14-48.
- 11. *Pearce J.A., Norry M.J.* // Contribs Mineral. and Petrol. 1979. V. 69. P. 33–47.
- 12. Наумов В.Б., Коваленко В.И., Дорофеева В.А., Ярмолюк В.В. // Геохимия. 2004. № 10. С. 1113–1124.
- 13. Альмухамедов А.И., Медведев А.Я., Золотухин В.В. // Петрология. 2004. Т. 12. № 4. С. 339—353.
- Коваленко В.И., Наумов В.Б., Ярмолюк В.В. Дорофеева В.А. // Петрология. 2000. Т. 8. № 2. С. 131– 164.
- Маракушев А.А., Писоцкий Б.И., Панеях Н.А., Готтих Р.П. // ДАН. 2004. Т. 398. № 6. С. 795–799.

Подписи к рисункам.