Р.П. Готтих¹, Б.И. Писоцкий² ¹ВНИИгеосистем, Москва ²ИПНГ РАН, Москва, pisotskiy@list.ru

К ВОПРОСУ О ФОРМИРОВАНИИ НЕФТЕМАТЕРИНСКИХ ТОЛЩ

На основе изучения содержания микроэлементов в породах и битумоидах, изотопного состава углерода карбонатов, соотношения между радиогенными изотопами (⁸⁷Sr/⁸⁶Sr и ¹⁴³Nd/¹⁴⁴Nd), характере распределения урана в шлифах и анализа вариаций радиоактивности пород показано, что в формировании углеродисто- кремнисто-карбонатных доманиковых пород франского яруса верхнего девона Волго-Уральской нефтегазоносной провинции принимали участие глубинные газовые эманации, имевпие восстановленный характер, а источником их явились области остывающих основных магм, выплавление которых в среднем девоне происходило из деплетированного мантийного резервуара.

В основании геологических разрезов многих нефтегазоносных бассейнов залегают толщи, характеризующиеся аномальными геохимическими характеристиками, выражающимися, прежде всего в повышенном содержании в них органического вещества (ОВ) и значительной металлоносности. На протяжении многих лет эти толщи являются предметом детального изучения как «рудников», так и геологов-нефтяников. Первых, в связи с пространственной ассоциацией пород такого состава с месторождениями металлов (неметаморфизованные аналоги черносланцевых формаций), вторых – с залежами нефти и газа, рассматривая их в качестве нефтематеринских, ответственных за генезис и формирование углеводородных (УВ) скоплений.

Из многочисленных работ, посвященных условиям образования металлоносных углеродсодержащих отложений, сошлемся на некоторые из них. Вероятными причинами периодичности накопления в геологических разрезах пород с аномальными геохимическими характеристиками, согласно (Добрецов, 1997; Грачев, 1998) являются грандиозные проявления вулканизма в истории Земли. Базальтовый вулканизм сопровождался выбросом в атмосферу огромных количеств углерода (в виде CO₂ и CH₄) с одновременным поступлением в седиментационные бассейны F, Cl, P, летучих элементов (Se, As, Sb, Hg), а также U,Re, Mo. Au, Ag (Неручев, 1986). Совокупный эффект влияния этих факторов приводил сначала к бурному развитию органической жизни, а затем к массовой гибели морских организмов (Макмод, 2005).

Целью настоящего исследования явилось получение экспериментальных доказательств участия глубинных флюидов в процессах формирования углеродсодержащих толщ в геологических разрезах осадочных бассейнов Волго-Уральской провинции. Объектом изучения явились семилукско-бурегские отложения франского яру са верхнего девона, вскрываемые скважинами в пределах Южно-Татарского свода.

Доманиковые отложения представлены глинисто-кремнисто-карбонатными породами, в той или иной степени насыщенными органическим веществом. Мощность горизонта составляет 15 - 20м. Карбонатный материал органогенных известняков сложен преимущественно разнозернистым кальцитом (от 10 до 98 %) от афанитовой до крупнозернистой размерности. Кроме того, отмечаются диагенетические образования сидерита (до 3 %) и доломита (от 0.1 до 10 – 80 %) в отдельных прослоях. Содержание органического вещества изменяется от 2 до 15 – 20 %. Представлено оно преимущественно сине-зелеными коккоидными и нитчатыми бактериальными матами, образующими слои от долей миллиметра до 1 - 1.5 см., обусловливающими слоистую текстуру отложений. Литогенная часть первичных осадков представлена глинистыми минералами (смектит, гидрослюда), количество которых не превышает 7 %, кислыми полевыми шпатами (до 6 %) и аморфным кремнеземом. Кремнистый материал (преимущественно опал и халцедон), содержание которого в некоторых случаях достигает 70 – 80 %, развивается по напластованию пород, слагая слои мощностью от миллиметра до десяти, «съедая» при этом известковую матрицу, ассимилирует бесструктурное бактериальное вещество и образует углеродисто-кремнистые разности пород.

Изучаемые породы отличаются от ниже и вышележащих повышенной радиоактивностью, обусловленной накоплением в них урана при низких содержаниях тория и калия (Рис. 1). Из анализа диаграмм спектрометрического гамма-каротажа скважин следует, что изучаемые разрезы достаточно неоднородны. При общей высокой ураноносности наблюдаются колебания в содержании элемента от 2 до 35 г/т, что значительно превышает кларк как для карбонатных, так и глинисто-карбонатных пород, формировавшихся в условиях нормального морского бассейна седиментации. Наряду с ураном, рассматриваемые отложения значительно обогащены по отношению к верхней земной коре V, Ni, Co, Cu, Zn, As, Se, Y, Mo, Ag, Cd, Re. В целом наблюдается общая тенденция увеличения концентрации микроэлементов в породах по мере накопления в них урана, что наиболее четко выражено в карбонатных разностях (Рис. 2) и позволяет в дальнейшем рассматривать в качестве показателя геохимической контрастности обстановок осадконакопления данные по содержанию в породах урана.

Связь микроэлементов с минеральной и органической составляющими пород изучена с использованием метода f-радиографии. Исследования показали, что в плотных, массивных, разнозернистых, часто обломочных доломитизированных известняках содержание урана близко к кларковым (1 - 1.5 г/т), в бактериально обогащенных участках увеличивается до 3.5 - 4.0 г/т, в совокупности составляя 2.0 - 3.0 г/т. Повышенные концентрации металла (3,5 - 4,5 г/т) приурочены к хемогенным, плитчатым, слоистым и слоистофлюидальным органогенным известнякам с характерной тонкозернистой структурой, что свидетельствует о совместном накоплении карбонатного материала и урана (Рис. 3а). В бактериальных матах таких пород содержание урана

Рис. 1. Данные спектрометрического гамма-каротажа скважины для пород доманикового горизонта (выделено стрелкой).

достигает 5.0 – 7.5 г/т (Рис. 36). Диагенетическая и катагенетическая перекристаллизация карбонатов приводила к перераспределению вещества, отражающемуся как в укрупнении кальцитовых зерен и доломитизации субстрата, так и в сегрегации органического вещества с образованием отдельных слоев, ветвистых новообразований, огибающих средне-крупнозернистые фаунистические остатки, участки преобразованных известняков. Одновременно происходила и дифференциация урана с формированием высокоураноносных органогенных прослоев (Рис. 3в). Количество подобных прослоев и уровень накопления металла в них и определяют современное содержание его в породах. Нельзя не отметить присутствие в последних секреторных смолистых выделений, не ясной природы, идиоморфных, округлых, концентрация урана в которых достигает долей процента и обусловлена процессом ассимиляции металла на стадии формирования осадка. Наличие корреляции между ураном и другими элементами позволяет считать рассмотренный процесс универсальным.

Привнос в бассейн седиментации МЭ, значительно отличающихся своими геохимическими характеристиками, мог осуществляться преимущественно в составе газовых эманаций. Об этом свидетельствуют материалы петрографических и литологических исследований, показавшие отсутствие в породах фундамента и низах осадочного чехла изучаемого региона значительной гидротермальной переработки субстрата, осуществляемой бинарными углекислотно-водными системами. Кроме того, проникновение именно газовых систем в нелитифицированные осадки фиксируется по текстурным особенностям пород. В некоторых образцах керна из отложений доманика отмечаются вертикальные зоны, мощностью до 2 – 4 см, выполненные тонкозернистым карбонатным материалом без признаков перекристаллизации, в котором «плавают» комки аналогичного по составу афанитового материала и разноориентированные сгустки бактериальных матов. Это, так называемые флюидизиты, выраженные также в виде «вторжения» в карбонатный ил глинистого материала более глубоких осадков при локальных поступлениях газов. В осадочных породах эндогенный углерод в результате интенсивной биологической ассимиляции превращается в OB сапропелевого типа, которое обеспечивает извлечение «избыточных» МЭ и накопление их, главным образом, в результате сорбционных процессов.

Одним из аргументом в пользу внешнего источника металлов для рассматриваемых отложений может служить анализ хондритнормализованных спектров распределения лантанидов.

Несмотря на то, что содержание редкоземельных элементов в доманиковых породах остается ниже кларка для верхней коры, относительное накопление их и в карбонатном материале вытекает из величины отношения суммы лантанидов к торию, который может быть принят в качестве меры «терригенности» пород. В случае «чистых» известняков (Th < 1.0 г/т) это отношение составляет ~ 15. Такая же величина получена и для аргиллитов кыновского времени, подстилающих доманиковые отложения, где содержание REE составляет 122.6 г/т, а тория – 8.1 г/т. По мере накопления в породах ОВ это отношение увеличивается и достигает ~ 50 в углеродисто-карбонатных породах с содержанием C $_{_{\rm opr}}\!>7$ %, что указывает с одной стороны, на повышенное содержание лантанидов в морской воде, а с другой, на контролирующую роль органического материала в их накоплении. Последнее вытекает и из распределения элементов по литотипам пород (табл. 1) и из наличия корреляции их с ураном.

Если в терригенных породах редкоземельные элементы являются индикаторами состава областей сноса, то в карбонатных они характеризуют, главным образом, условия осадконакопления. Тренды распределения REE в различных карбонатных породах близки между собой и представлены пологонаклонными кривыми с небольшим обогащением LREE относительно HREE (Рис. 4). Если в каче-

Рис. 2. Диаграммы соотношения микроэлементов в углеродкремнисто-карбонатных породах доманика по мере накопления в них урана (данные ИНАА, г/т).

стве фонового взять тренд распределения присущий аргиллитам кыновского горизонта (Ce/Yb)_N = 9.6, то в карбонатных породах доманикового горизонта это отношение составляет 1.8, снижаясь в углеродисто-кремнисто-карбонатных разностях до 1.2. Обогащение рассматриваемых литотипов HREE достаточно выражено и в величинах $Sm_N/Yb_N - 2.3$ и 1.3, соответственно. Все это свидетельствует о том, что доля HREE в общем балансе REE в углеродсодержащих карбонатах выше, чем в породах, где основную роль в их накоплении играл терригенный материал. Для окремненных известняков характерно наличие четких европиевых и цериевых минимумов, Eu/Eu* составляет ~ 0.6, Ce/Ce* - 0,4 (в аргиллитах - 1,0).

Рис. 4. Распределение редкоземельных элементов в доманиковых породах (а) и битумоидах (б). Нормировано на CI по (Evensen et al., 1978). Примечание. Скважины (породы): 1 – Восточно-Сулеевская (углеродистая глинисто-кремнисто-карбонатная); 2 – Миннибаевская (углеродистая кремнисто-карбонатная); 3 – Бухарская (карбонатная); 4 – Степноозерская (аргиллит).

Тренд распределения нормализованных лантанидов в битумоидах несколько отличен от аналогичных кривых, присущих породам. В экстрактах из пород доманика снизились величины цериевого (до 0,55-0,65) и европиевого (до 0,9) минимумов, а в битумоиде из кыновских глин они остались на прежнем уровне. Эти данные позволяют говорить о наличии различных источников РЗЭ в терригенных и углеродсодержащих карбонатных породах верхнего девона франского яруса и формировании последних под влиянием глубинных флюидов – продуктов дегазации магм основного состава. В этом случае происходит частичное отделение европия от соседних лантанидов, а восстановительная среда осадконакопления препятствует переходу церия в четырехвалентное состояние. Об этом же свидетельствует характер и уровень накопления в восстановленной составляющей доманиковых пород, по сравнению с экстрактами из аргиллитов, таких микроэлеменов как V, Mn, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Re, Au, Hg, Pb, являю-

D	D Curaanawag		M		Гинараная		C	
Эл-т _/_	В.Сулеевская		Минниоаевская		Бухарская		степноозерская	
Γ/T 	СКВ. 3	30075	скв.20355		скв. 750		скв.1001	
11	/48.1/	30,81	202,92	25,31	134,46	2,95	4366,92	60,83
V	5/6.4/	226,55	1258,47	805,55	227,76	322,63	156,72	24,04
Cr	100.32	2,10	31,93	4,14	11,21	4,23	124,52	3,26
Mn	931.00	26,43	221,99	212,38	11,30	1,/5	249,37	0,13
C0	4.07	0,85	2,00	0,85	0,92	0,17	21,22	2,01
N1 Cu	465.20	115,63	241,89	412,20	/5,64	380,95	61,40	268,36
	520.02	211,02	147,04	105,61	15,03	50,67	13,21	42,90
Zn	2 04	2 2 2 2	251,51	105,90	83,83	0.12	00,95	43,00
Ga	3.94	2,32	1,30	0,67	5.10	0,12	30,30	0,33
As	11.40	0,02	12.00	10.91	5,10	1.62	20,02	0,00
Dh	22.66	0,52	6.40	0.17	3,10	1,02	140.05	0,82
KD Su	22.00	10,40	540.41	0,17	3,10	0,08	72.51	0,99
Sr	97.28	1.52	27.05	1,91	14,41	1,21	14.66	4,55
I Zr	37.44	1,55	27,95	0,96	0.24	0,10	14,00	0,23
	40.03	3,48	29,68	1,30	9,34	3,48	218,89	3,02
ND M-	2.15	0,071	1,43	0,045	0,30	0,007	15,10	0,11
MO	48.31	45,49	40,99	17,96	/,91	1,01	2,06	0,25
RU	H/0	0,0036	H/O	0,0024	H/0	0,0012	H/O	-
Pa	H/0	0,023	H/0	0,016	H/0	0,008	H/0	0,0001
Ag	0,74	0,203	0,63	0,104	0,23	0,15	0,54	0,080
Cu	2,38	0,300	2,02	0,411	0,82	0,31	H/0	0,084
50	3,95	1,100	4,15	0,160	1,50	0,080	0,00	0,051
	12.52	0,021	10.17	0,005	2,72	0,003	25.60	0,031
	11.00	1 1 9 7	10,17 9.45	0,230	3,72	0,149	23,00	0,748
Dr	2.60	0.170	2 26	0,240	2,07	0,299	6.26	0.152
Nd	2,09	0,179	2,50	0,030	3 37	0,024	21.60	0,152
Sm	2.54	0.153	2 41	0,097	0.76	0,071	3 20	0,049
Fu	0.64	0.049	0.58	0.004	0.18	0.004	0.58	0,030
Gd	3 41	0.049	3.18	0,004	1.07	0.004	2 27	0.045
Th	0.52	0.026	0.49	0,001	0.15	0.002	0.40	0.007
Dv	3 47	0.155	3.12	0.007	0.98	0.011	2.66	0.041
Ho	0.78	0.033	0.68	0.001	0.22	0.002	0.59	0.009
Er	2 30	0.084	1.96	0.004	0.58	0.006	1.62	0.024
Tm	0.34	0.011	0.29	0.0006	0.07	0.001	0.24	0.003
Yh	2.09	0.061	1.80	0.004	0.38	0.007	1 47	0.024
Lu	0.32	0.009	0.25	0.0006	0.07	0.001	0.22	0.004
Hf	0.95	0.048	0.77	0.025	0.23	0.005	6.11	0.075
Та	0.18	-	0.08		0.05	-	1.08	0.009
W	0.57	0.458	0.37	0.195	0.15	0.03	1.23	0.082
Re	0.15	2.50	0.05	0.192	0.02	0.07	0.01	0.009
Au	0.03	0.09	0.01	0.012	0.02	0.002	-	0.001
Hg	0.92	3.24	0.63	1.32	0.35	3.43	-	0.38
TI	0,71	0,041	0,42	0,014	0,20	0,010	1,17	0,009
Pb	20,75	31,75	14,97	31,24	2,15	4,38	23,89	2,71
Bi	0,20	0,02	0,13	-	0,05	0,03	0,39	0,17
Th	1,99	0,063	0,80	0,030	0,39	0,005	8,10	0,090
U	14 28	0.661	12.96	0,290	3 23	0 109	2 29	0.076

Табл. 1. Сравнительная характеристика металлоносности пород и битумоидов. Породы: 1-углерод-глинисто-кремнисто-карбонатная; 3- углерод-кремнисто-карбонатная; 5 - карбонатная; 7- аргиллит. Битумоид: 2, 4, 6, 8.

Рис. 5. Содержание микроэлементов в бактериальных матах пород доманика по отношению к кларку верхней коры. Нормировано по (Тэйлор, Мак-Леннан, 1988) (данные inaa u icp ms).

щихся типичными представителями продуктов дифференциации базитовых расплавов (табл. 1).

Обогащенность экстрактов из пород доманика микроэлементами объясняется, надо полагать тем, что большая их часть в карбонатных разностях находится или в виде металлоорганических соединений легко извлекаемыми растворителями, или образует их в процессе экстракции. Определяющая роль органического вещества в накоплении микроэлементов вытекает и из анализа самих бактериальных матов. Большинство элементов в нем превышает уровень содержания в породах в 3 – 5 раз, а Ag, Cd, Sb, U в 10 – 15 раз. Имеющиеся у нас данные нейтронно-активационного и масс-спектрометрического анализов приведены к средним значениям и представлены на рисунке 5.

Рассматривая геохимическую характеристику пород, следует остановиться еще на одной их особенности, а именно присутствие в них повышенных содержаний кремнезема, независимо от того представлены они глинисто-карбонатными или чисто карбонатными образованиями.

В настоящее время развиваются представления об определяющей роли глубинных флюидов в существенном окремнении углеродсодержащих пород. В работе (Летников, 2005) образование глинисто-кремнистых отложений Западной Сибири связывается с флюидизацией истощенной мантии сравнительно низкотемпературными восстановленными газовыми системами, недонасыщенными Si, Al, К и Na, но с характерными мантийными «метками» присутствием в составе Ni, Co, Cr, V, Pt, Pd, Au. Фильтруясь через земную кору, флюиды переводят в свой состав Si, Al, K, u Na за счет разложения кварца и алюмосиликатов кристаллического основания и приносят данные элементы в водную среду осадочных бассейнов, часть которых в силу низкой растворимости отлагается на их дне (Al_2O_2, SiO_2) , а часть остается в растворенном виде (Na, K). Продолжая данную логику можно объяснить как высокую металлоносность, так и широкий спектр микроэлементов в рассматриваемых углеродсодержащих породах, большинство которых в дальнейшем извлекается из морской воды в осадок в результате разнообразных процессов минералобразования, сорбции, восстановления, синтеза элементорганических соединений и т.д.

Определяющая роль урана в формировании естественной радиоактивности доманиковых пород позволила использовать для выделения возможных путей поступления глубинных систем площадные карты вариаций гамма-поля верхнедевонских отложений, как в региональном плане, так и в пределах локальных объектов (месторождений), построенные с использованием диаграмм радиоактивного каротажа скважин.

Составление схем радиоактивности для ряда площадей ЮТС показало значительную дифференцированность наблюдаемого параметра, достигающая 20 – 25 у. Причем положение областей высоких значений не хаотично имеет четко выраженную направленность и пространственную согласованность с кривизной рельефа поверхности кристаллического основания. Надо полагать, что разрывы, ограничивающие блоки фундамента, выражались в развитии устойчиво ориентированных зон трещиноватости. Приуроченность к ним повышенных значений радиоактивности пород свидетельствует о сопряженности во времени и пространстве седиментационных, геодинамических и миграционных процессов. Несмотря на широкий разнос материала места инъекций выделяются максимальным накоплением урана, а присутствие во флюиде, наряду с ураном, широкой гаммы других элементов приводило к формированию нетипичной для осадочного чехла геохимической аномалии в углерод-кремнистых карбонатных породах. Широкое развитие доманиковых фаций в пределах Волго-Уральской провинции свидетельствует о масштабности данного процесса. Таким образом, кристаллический фундамент и осадочный чехол выступают как взаимосвязанные элементы, представляющие единую флюидо-динамическую систему.

В качестве примера на рис. 6 приведена карта распределения аномальных полей интегрированных значений естественной и нейтронной гамма-активности пород доманиковых отложений Абдрахмановской площади, входящей в состав Ромашкинского нефтяного месторождения, в сопоставлении с рельефом кристаллического фундамента.

Вклад глубинных флюидов в формирование доманиковых отложений вытекает и из анализа данных по изотопно-

Площадь скважина	Название	U	δ ¹³ C	δ ¹³ C
	породы	ppm	карбоната ‰	битумоида
Миннибаевская 20355	известняки	2,0	-4,7	-28,1
		10,5	-10,4	-29,4
		18,5	-13,2	-27,4
Новоелховская 8113	«	1,0	0,1	-27,9
		6,2	-8,6	-25,3
Бухарская 750	«	5,9	-8,6	-29,2
		13,3	-12,6	
В.Лениногорская 28955	«	1,3	-5,5	-2,9,4
		10,7	-12,2	-28,1
Новоелховская 20009,	Кальцит		-14,3	
инт 3986 м	прожилковый			
4153-4155			-13,9	
4360-4363			-16,4	
4827-4829			-16,9	

Табл. 2. Ураноносность, изотопный состав углерода известняков, битумоидов из отложений доманика и прожилковых кальцитов из пород фундамента.

му составу углерода известняков, который значительно облегчен по сравнению с морскими карбонатами. Особенно ярко это облегчение выражено для тех образцов, в которых наблюдается повышенное содержание урана. В этих случаях δ^{13} С известняков снижается до – 13,2 ‰, что свидетельствует как о поступлении в целом в седиментационный бассейн «легкого» углерода, что подтверждается и данными по прожилковых кальцитам их кристаллического фундамента, так и значительном участии его в процессах карбонатобразования в областях инъекций. Ассимиляция CO₂ и CH₄ микроорганизмами привела к дальнейшему облегчению углерода OB и битумоидов (табл. 2).

Для определения источника металлов во флюидах были использованы данные по радиоизотопной характеристике пород и битумоидов с использованием Rb-Sr u Sm-Nd систематик. Изотопный состав стронция морских вод палеозоя известен и определяется геодинамическим режимом развития регионов, то есть взаимодействием экзо-

Рис. 6. Схема развития полей интегрированных значений естественной и нейтронной гамма-активности пород и локальной составляющей рельефа фундамента Абдрахмановской площади.

генных и эндогенных факторов. Был изучен состав стронция в чистом известняке, мергеле и аргиллите, а также в битумоидах из пород с различным содержанием урана. Как следует из табл. 3 и рис. 7 начальные значения ⁸⁷Sr/⁸⁶Sr в породах составляют 0,70827 – 0,70865, что соответствует значениям для вод верхнего девона (McArthur, Howarth, 2004). В эту область попадают и данные по двум битумоидам, что свидетельствует об относительном равновесии между минеральной составляющей осадка и органическим веществом. Вместе с тем, в двух пробах битумоидов отношение ⁸⁷Sr/⁸⁶Sr ниже морских и составляет, соответственно, 0,7079 и 0,7068. Столь низкие начальные отношения стронция в битумоидах из пород девонского возраста могут быть обусловлены лишь участием эндогенных эманаций в формировании отложений подобного типа.

В отличие от стронция поступление редкоземельных элементов в бассейны седиментации происходит с континентов главным образом в виде взвеси, отражая состав пород областей сноса при времени пребывания в океанах порядка 300 лет. Из табл. 4 следует, что мергель и окрем-

ненная глинистокарбонатная порода, также как и битумоид из нее, близки между собой по

Рис. 7. Эволюция изотопного состава стронция и параметр эпсилон неодима пород и битумоидов доманика от момента формирования по настоящее время.

Вещество	Содержание,		⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	E ^T Sr
	ppm			(изм.)	(0,365)	
	Sr	Rb				
Известняк	385	1,59	0,012±1	0,70833±6	0,70827	115
Мергель	285	30,1	0,3050±12	0,71001±3	0,70842	115,8
Аргиллит	14,5	257	0,510±3	0,71130±5	0,70865	120,5
Битумоид	0,16	1,55	0,296±19	0,70973±10	0,70833	115,9
Битумоид	3,77	0,808	0,621±1	0,711593±14	0,70859	119,6
Битумоид	1,81	0,17	0,2692±18	0,70934±6	0,70794	110
битумоид	12	2,39	$0,578\pm1$	0,709764±13	0,70676	93,5

Табл. 3. Rb-Sr-изотопные данные пород и битумоидов.

					87.5
Вещество	Содержание, ррт		14/Sm/144Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	E ^{0(T)} Nd
	Nd	Sm			
Окремненный	4.41	0.966	0.132	0.512230±7	-7.96(-4.9)
известняк					
Мергель	24.1	4.9	0.123	$0.512210{\pm}10$	-8.3(-4.9)
Известняк	4.16	0.852	0.124	0.512261±10	-7.4(-3.9)
Битумоид	0.471	0.086	0.1105	0.512212±10	-8.3(-4.3)
Битумоид	2.302	0.153	0.0402	0.512681±10	0.84(8.2)

Табл. 4. Sm-Nd- изотопные данные пород и битумоидов. изотопному составу неодима (значение параметра $\epsilon^{T}_{Nd} = -4.8; -4.9; -4.3$). Вместе с тем, тонкозернистый урансодержащий известняк имеет более высокие значения $\epsilon^{T}_{Nd} = -3.9$, а битумоид углеродсодержащей породы, отобранной на максимальном пике значений гамма-каротажа, концентраций урана (35,8 г/т), а, следовательно, и с повышенным содержанием «гидрогенных» REE, характеризуется начальными значениями параметра эпсилон неодима, присущими деплетированным верхнемантийным источникам. (ϵ^{T}_{Nd} =8,2). Модельный возраст источника (T^{DM}), определенный для данной пробы, составляет 411 млн. лет, что соответствует времени тектоно-магматической активизации в пределах Восточно-Европейской платформы (Масляев, 2003; Грачев и др., 1994).

Полученные материалы позволяют сделать принципиальные выводы о том, что, во-первых, формирование доманиковых пород происходило при участии зндогенной составляющей, во-вторых, глубинные газовые эманации, поступавшие в бассейн седиментации, имели частично восстановленный характер, а их источником являлись области (каналы) остывающих основных магм, выплавление которых в среднем девоне происходило из деплетированного мантийного резервуара.

Литература

Грачев А.Ф. Мантийные плюмы и биологические катастрофы в истории Земли. Метийные плюмы и геодинамика. М. 1998. 70-76 Грачев А.Ф., Николаев В.Г., Сеславинский К.Б. Материалы Межд.

Совещ.: «Внутриплитная тектоника и геодинамика осадочных бассейнов», фонд «Наука России», Гео-инвекс. М. 1994. 5-42

Добрецов Н.Л. Мантийные суперплюмы как причины главной геологической периодичности и глобальных перестроек. ДАН. № 6. 1997. 797-800.

Летников Ф.А. Флюидный механизм деструкции континентальной земной коры и формирование осадочных нефтегазоносных бассейнов. ДАН РФ. № 2. т. 401. 2005. 205-207.

Макмод М. Причины массового вымирания организмов, статистическая оценка многофакторных сценариев. Геология и геофизика. № 9. т. 46. 2005. 993-1001.

Масляев Г.А. Стадии пульсационной эндогенной активизации литосферы Русской платформы на плитном этапе ее эволюции. ДАН. № 3. т. 391. 2003. 357-360;

Неручев С.Г. Глобальные геохимические аномалии на рубежах активных изменений органического мира. Геология и геофизика. № 6. 1986. 25-32.

Тэйлор С.Р., Мак-Леннан С.М. Континентальная кора ее состав и эволюция. М. Мир. 1988.

Evensen N.H., Hamilion P.J., O'Nions R.K. Geochim. Cosmochim. Acta. v. 42. 1978. 1199-1212.

McArthur J. M., and Howarth R.J. Strontium isotope stratigraphy. (F. Gradstein, J. Ogg, A.G Smith eds.) *A geologic time scale*. Cambridge University Press. 2004. 96-105.

Р.П. Готтих, Б.И. Писоцкий К вопросу о формировании нефтематеринских толщ

