Hamur

ВУ ВАН ХАЙ

ОСОБЕННОСТИ СОСТАВА УГЛЕВОДОРОДОВ В СВЯЗИ С ГЕНЕЗИСОМ НЕФТЕЙ И БИТУМОВ В КРИСТАЛЛИЧЕСКИХ ПОРОДАХ НА ШЕЛЬФЕ ВЬЕТНАМА И СЕВЕРЕ ХАКАСИИ

02.00.13 - нефтехимия

25.00.09 – геохимия, геохимические методы поисков полезных ископаемых

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена на кафедре геологии и разведки полезных ископаемых Института природных ресурсов Национального исследовательского Томского политехнического университета и в Федеральном государственном бюджетном учреждении науки Институте химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН)

Научный руководитель: Серебренникова Ольга Викторовна, доктор химических наук,

профессор, Институт химии нефти СО РАН, зав. лаб.

Официальные оппоненты: Антипенко Владимир Родионович, доктор химических

наук, профессор, Институт химии нефти СО РАН

Борисова Любовь Сергеевна кандидат геолого-

минералогических наук, доцент, Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН

Ведущая организация: Институт органической и физической химии

им. А.Е. Арбузова КазНЦ РАН, г. Казань

Защита состоится "7" ноября 2012 г. в 15 часов на заседании Диссертационного совета Д 003.043.01 при Институте химии нефти СО РАН по адресу: 634021, г. Томск, пр. Академический, 4, конференц-зал.

Fax: (382-2) 49-14-57, e-mail: <u>dissovet@ipc.tsc.ru</u>

С диссертацией можно ознакомиться в библиотеке ИХН СО РАН.

Автореферат разослан " " октября 2012 г.

Ученый секретарь Сагаченко

диссертационного совета Татьяна Анатольевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Промышленные скопления природных битумов, нефти, газа и газоконденсата встречаются обычно в верхней, осадочной оболочке земной коры. Но такие скопления обнаруживают и в кристаллических породах — вулканических, интрузивномагматических и метаморфических, а запасы углеводородного сырья в кристаллическом фундаменте могут превышать известные запасы осадочного чехла.

Получение сведений о составе нефтей и природных битумов, присутствующих в кристаллических породах, позволит уточнить их генезис, определить отличительные характеристики, присущие нафтидам из кристаллических пород, расширить представления о геохимической эволюции органического вещества (ОВ), о влиянии на его состав экстремально высоких температур, а впоследствии, возможно, разработать новые геохимические критерии поиска и разведки нефтяных месторождений в породах фундамента.

Ярким представителем крупного скопления нефти в кристаллическом гранитоидном фундаменте является месторождение Белый Тигр на юге Вьетнама, а на севере Хакасии в базальтах Минусинской впадины присутствуют проявления вязких и твердых битумов. Сведения о химическом составе этих нефтей и битумов весьма ограничены, что не позволяет определить их специфические особенности, черты сходства с нафтидами осадочной толщи и основные отличительные признаки.

Цель работы. Выявление особенностей состава углеводородов нефтей и битумов, залегающих в кристаллических породах на примере месторождений Вьетнама и Хакасии, признаков сходства и различия их с нафтидами осадочной толщи.

Основные задачи исследования:

- 1. Провести сравнительное исследование состава углеводородов (УВ) нефтей, залегающих в гранитоидах кристаллического фундамента на юге Вьетнама, и нефтей из перекрывающих их осадочных толщ. Выявить черты сходства и различия между нефтями.
- 2. Изучить состав углеводородов РОВ осадочных и кристаллических пород вблизи залежей нефтей.
- 3. Проанализировать состав УВ природных битумов, заполняющих трещины и присутствующих в миндалинах эффузивных базальтов и интрузии долеритов на примере севера Хакасии, установить его характеристические особенности.
- 4. Определить возможные пути и условия формирования состава нафтидов и их залежей в кристаллических породах шельфа Вьетнама и севера Хакасии.

Новизна результатов проведенных исследований. На основании комплексного изучения индивидуального и группового состава насыщенных и ароматических УВ в

природных битумах, залегающих в базальтах Хакасии, определена совокупность признаков, характеризующих жесткое термическое воздействие магмы на ОВ осадочных пород.

Впервые в природных битумах установлено наличие фенилзамещенных производных нафталина, фенантрена, пирена и трифенилена. Идентифицированы не обнаруженные ранее в других природных объектах 1,9-(1-нафтилметил)-фенантрен, 9Н-трибензоциклогептен и ряд его алкилзамещенных гомологов состава C_{20} — C_{32} , α -метил-(C_{14} — C_{22}) и α -этилалкилтолуолы (C_{12} — C_{22}), этилалкилбифенилы (C_{15} — C_{30}) и дифенилалканы (C_{15} — C_{29}). В нефтях и рассеянном органическом веществе (РОВ) пород месторождения Белый Тигр обнаружено присутствие тетрациклического терпана C_{30} , гаммацерана, секогопанов, алкил- и метилалкилциклогексанов.

Впервые получены количественные и качественные данные о молекулярном составе насыщенных и ароматических УВ нефтей и РОВ осадочных и кристаллических пород месторождения Белый Тигр, показавшие генетическое родство нефтей из отложений олигоцена и фундамента и свидетельствующие о наиболее вероятном источнике генерации нефтей – ОВ отложений олигоцена.

Практическая значимость результатов. Полученные результаты делают возможным распознавать нефти и битумы, претерпевшие жесткое термическое воздействие в недрах. Обнаруженные в нефтях и РОВ пород месторождения Белый Тигр специфические биомаркеры позволяют проводить более точные корреляции материнская порода — нефть и нефть — нефть в шельфовой зоне Вьетнама, а полученные свидетельства генерации нефтей ОВ олигоценового комплекса — более обоснованно оценить запасы нефти месторождения Белый Тигр.

Положения, выносимые на защиту:

- В фундаменте и олигоцене на юге Вьетнама залегают генетически однотипные нефти, генерированные ОВ осадочных пород.
- Специфический состав ароматических углеводородов битумов в миндалекаменных базальтах и долеритах Хакасии обусловлен жестким термическим воздействием на ОВ магмы при ее внедрении в земную кору.
- Состав УВ битума из трещиноватых базальтов Хакасии свидетельствует об его образовании в результате гипергенеза нефти, поступившей в кристаллические коллекторы из осадочного комплекса.

Апробация работы и публикации. Основные результаты исследований докладывались и обсуждались на: XIII и XVI Международных симпозиумах студентов и молодых ученых имени академика М.А. Усова «Проблемы геологии и освоения недр» (Томск, 2009, 2012), IV и VI Всероссийских научно-практических конференциях «Научная

инициатива иностранных студентов и аспирантов российских вузов» (Томск, 2010, 2012), 25ой Международного конгресса по органической геохимии (Интерлэйкен, Швейцария, 2011), VIII Международной конференции «Химия нефти и газа» (Томск, 2012).

Публикации. По теме диссертационной работы опубликованы 7 статей в журналах, определенных перечнем ВАК, материалы 10 докладов в трудах международных и российских конференций.

Личный вклад автора в получении результатов, изложенных в диссертации. Диссертантом лично выполнен весь комплекс экспериментальных работ по выделению УВ из нефтей и битумов, которые были проанализированы методами газо-жидкостной хроматографии и хромато-масс-спектрометрии. Идентифицирован состав УВ, рассчитано относительное содержание в смеси отдельных соединений. Проведен анализ и обобщены полученные результаты, сформулированы основные положения и выводы работы.

Достоверность результатов проведённых исследований. Достоверность и обоснованность научных результатов подтверждается значительным объемом фактического материала и использованием современных методов анализа вещества, выполненного на высокочувствительном сертифицированном оборудовании, а также проведением параллельных экспериментов.

Объем и структура работы. Диссертация состоит из введения, 4 глав, заключения, и списка использованных источников из 145 наименований. Полный объем диссертации составляет 142 страницы, включая 48 рисунков и 27 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Состояние проблемы и задачи исследования

В первой главе обобщены современные достижения в изучении индивидуального состава насыщенных УВ и ароматических соединений, проанализированы современные представления об их происхождении, обоснованы и сформулированы задачи исследования.

Глава 2. Характеристика объектов и методов исследования

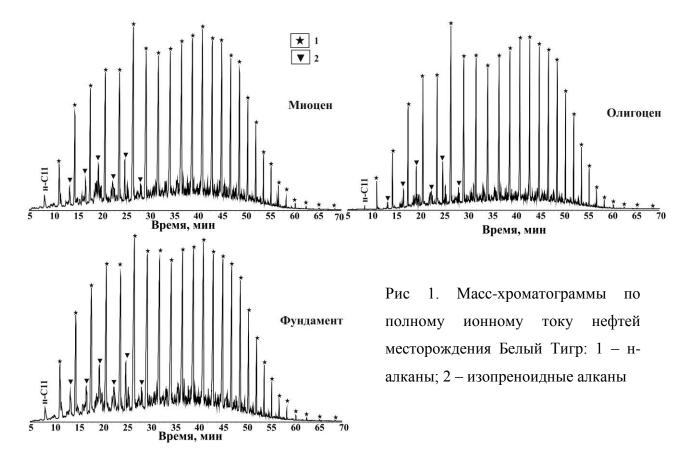
В рамках работы был изучен состав УВ четырех образцов осадочных олигоценмиоценовых и кристаллических пород, пяти образцов нефти из фундамента и двух нефтей из нижнего миоцена и олигоцена месторождения Белый Тигр (Вьетнам). На севере Хакасии из обнажений в долине р. Сохочул отобраны и исследованы: вязкий битум из трещиноватых базальтов (ВБ), твердый битум из эффузивных миндалекаменных базальтов (ТБсх) и экстракт из вмещающих битум базальтов (БЗ), в районе высоты Красная Горка – твердый битум из миндалины в долеритовой интрузии (ТБкрг).

Совокупность методов экстракции, жидкостной и газожидкостной хроматографии, а также газовой хромато-масс-спектрометрии, использованные для выделения и

характеристики состава УВ, позволили получить данные о составе насыщенных и ароматических УВ в нефтях, битумах и экстрактах из пород.

Глава 3. Состав углеводородов нефтей и РОВ пород месторождения Белый Тигр

В составе идентифицированных УВ всех изученных нефтей и РОВ пород месторождения Белый Тигр преобладают насыщенные структуры (табл. 1), среди которых идентифицированы структурные группы алканов, алкилциклогексанов, стеранов, секогопанов, сесквитерпанов, три-, тетра- и пентациклических терпанов. Ароматические УВ представлены моно-, би-, три, тетра- и пентациклическими структурами.


Таблица 1 – Содержание групп УВ в нефтях и РОВ пород месторождения Белый Тигр (% на сумму идентифицированных)

Группа УВ	Нефти, отобранные из:					ОВ пород	
	Миоцена	Олигоцена	Фундамента			Осадочных*	Гранитов*
			мин.	макс.	среднее	Осадочных	т ранитов
	Содержание, % отн.						
Алканы	86,18	87,55	75,09	88,07	84,70	73,52	81,89
Алкилциклогексаны	3,85	3,96	4,53	11,73	5,91	2,72	3,09
Метилалкилциклогексаны	2,68	3,01	2,29	9,26	4,07	1,74	2,83
Стераны	0,10	0,07	0,0004	0,03	0,01	0,13	0,29
Терпаны	2,47	1,98	0,43	1,59	1,11	1,62	1,24
Моноарены	0,85	0,67	0,21	0,68	0,45	2,01	3,15
Биарены	2,35	1,21	1,46	2,35	1,80	9,33	1,37
Триарены	1,45	1,44	1,25	3,24	1,85	8,26	5,49
Тетраарены	0,07	0,11	0,08	0,22	0,11	0,68	0,64
Пентаарены	0,001	0,002	0,001	0,005	0,003	0,02	0,04
*-среднее значение по двум образцам пород							

Состав насыщенных углеводородов нефтей

Основной группой идентифицированных УВ всех нефтей являются алканы (табл. 1). Их содержание несколько снижается в нефтях из фундамента. В смеси УВ возрастает концентрация циклогексанов (сумма метилалкил- и алкилциклогексанов в нефтях из фундамента варьирует от 7 % до 21 %). Во всех нефтях содержание терпанов существенно превышает концентрацию суммы стеранов.

характеризуются Bce изученные нефти молекулярно-массовым сходным распределением н-алканов C_{11} – C_{39} с максимумами, приходящимися на C_{17} и C_{23} и изопреноидных алканов (рис. 1), а также алкилциклогексанов, представленных гомологами C_{11} – C_{37} , максимумами распределения, приходящимися на C_{15} И C_{17} . Метилалкилциклогексаны представлены набором гомологов С₁₃-С₃₆, каждый из которых состоит из трех орто-, мета- и пара- изомеров, во всех нефтях преобладают ортометилзамещенные формы. Значения соотношения изопреноидных алканов пристана и фитана (П/Ф>2) указывают на окислительную обстановку накопления исходного ОВ всех исследованных нефтей.

Стераны присутствуют во всех нефтях в очень низких концентрациях, среди них преобладают регулярные C_{27} – C_{29} . Содержание диастеранов невелико (в нефтях из миоцена несколько выше, чем в остальных). Соотношение содержания изо-стеранов C_{27} , C_{28} и C_{29} , характеризующее вклад в исходное ОВ отдельных видов биопродуцентов, позволяет проводить палеогеографические реконструкции условий накопления исходного ОВ и показывает, что накопление исходного ОВ всех исследованных нефтей могло происходить в прибрежном мелком море.

Таблица 2 – Состав терпанов нефтей месторождения Белый Тигр

	Нефти, отобранные из						
Группа терпанов	Миоцена	Олигоцена	Фундамента				
		Олигоцена	Мин.	Мак.	Сред.		
	Содержание, % отн.						
Бицикланы	57,5	55,8	80,2	93,0	87,7		
Трицикланы	7,5	14,0	4,8	11,3	6,5		
Тетрацикланы	0,6	0,6	0,1	0,2	0,1		
Пентацикланы	22,8	18,2	1,4	3,6	2,1		
Секогопаны	11,6	11,4	0,8	5,2	3,6		

Суммарное содержание терпанов, представленных би-(сесквитерпаны), три-, тетра- и пентациклическими структурами, во всех нефтях существенно выше, чем

стеранов. Наиболее представительным классом терпанов являются сесквитерпаны (табл. 2), включающие изомеры нордримана, дримана и гомодримана с преобладанием дриманов (рис. 2). От миоцена к фундаменту снижается относительное содержание гомодриманов, в частности 8β(H)-гомодримана (пик 10). Среди дриманов снижается содержание изомера 3 и 8β(H)-дримана (пик 5), увеличилось содержание изомера 6 (рис. 2).

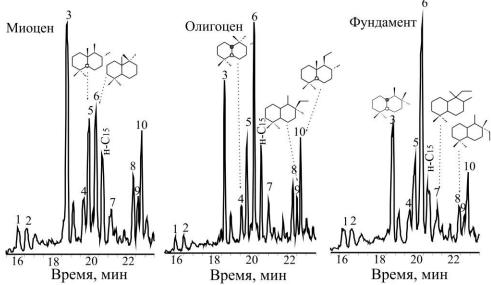
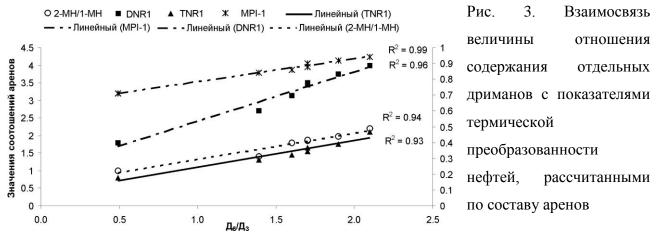



Рис. 2 Массфрагментограммы (m/z=123) сесквитерпанов нефтей месторождения Белый Тигр: 1,2 — нордриманы $(C_{14});$ 3-6 — дриманы $(C_{15});$ 7-10 — гомодриманы (C_{16})

Сопоставление отношения $Д_6/Д_3$ с рассчитанными нами по составу аренов величинами коэффициентов, которые обычно используются для оценки термической преобразованности нефтей (MNR, DNR1, TNR1, MPI-1), показало прямо пропорциональное изменение этих параметров (рис. 3). Это указывает на возможность использования данных о составе сесквитерпанов в качестве еще одного критерия термического созревания OB.

Трициклические терпаны (T_{20} – T_{36}) доминируют над гопанами в нефти из фундамента (табл. 2, рис. 4). Вверх по стратиграфическому разрезу их относительное содержание снижается, фиксируются только следы T_{31} – T_{36} гомологов, и в нефти из миоцена резко преобладают пентациклические структуры (27Ts, 27Tm, 29–35).

Тетрациклический терпан C_{24} присутствует во всех нефтях в малой концентрации. Обнаружено наличие во всех нефтях небольшого количества (до 0,22 % от суммы терпанов) гаммацерана (G), свидетельствующего о невысокой солености вод в бассейне седиментации исходного ОВ. Присутствует тетрациклический терпан C_{30} . Его наличие, а также величины отношения T_{26}/T_{25} , составляющие 1,2–1,4, характерны для нефтей, исходный органический материал которых отлагался в озерных обстановках.

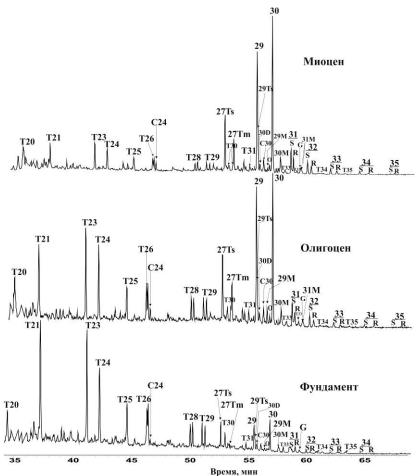


Рис. 4. Масс-фрагментограммы терпанов (m/z 191) нефтей месторождения Белый Тигр

Неморским обстановкам накопления исходного OB отвечает также низкое содержание стеранов отношению К гопанам $(St_{29}/H_{30}$ составляет 0,1-0,2). Во всех нефтях присутствует олеанан (О), указывающий на то, что в состав исходного ОВ нефтей месторождения Белый Тигр входили остатки покрытосеменных растений, отлагавшихся бассейне (часто дельтовом), не старше мелового.

Во всех нефтях присутствуют 8,14- секогопаны состава C_{27} , C_{29} — C_{33} . В нефти миоцена зафиксировано, кроме того, наличие C_{34} и C_{35} секогопанов

Среди 8,14-секогопанов в нефтях из фундамента и олигоцена доминируют C_{29} , в нефти из миоцена — C_{27} . Содержание отдельных гомологов в ряду C_{29} — C_{35} снижается с ростом молекулярной массы. Величина отношения содержания секогопанов (m/z 123) к C_{30} гопану (m/z=191) составляет в нефти миоцена 1,6, возрастает в нефти из олигоцена (2,5) и фундамента (11,4). Такое распределение секогопанов, а также трициклических терпанов (величина отношения T_{23} /30 увеличивается от 0,2 до 4,0) в разрезе может быть следствием большей термической преобразованности нефтей из олигоцена и фундамента и увеличения относительного содержания секогопанов и трициклических терпанов за счет меньшей термической устойчивости гопановых структур.

Таким образом, состав насыщенных УВ нефтей свидетельствует о нестабильности фациальных условий накопления продуцировавших нефтяные флюиды материнских толщ, отвечающих условиям отложения олигоцена исследованной территории, и несколько большей термической преобразованности нефтей, залегающих в кристаллическом фундаменте и олигоцене по сравнению с нефтью из миоцена.

Состав ароматических углеводородов нефтей

Среди ароматических УВ во всех нефтях доминируют би- и триарены (табл.1). Биарены на 90-96 % представлены нафталинами, а среди триаренов преобладают фенантрены (93-97) %). В смеси биаренов содержание бифенилов, представленных бифенилом и его метил- и диметилзамещенными гомологами, увеличивается от миоцена к фундаменту от 4 % до 11 % отн. Во всех нефтях среди метилбифенилов (МБФ) преобладает 3-МБФ, а в минимальной концентрации присутствует 2-МБФ. Содержание флуоренов преобладанием метилзамещенных структур максимально в нефтях олигоцена (в среднем 7 % от суммы триаренов). Молекулярный состав нафталинов и соотношение содержания отдельных соединений для всех исследованных нефтей практически идентичны. Мало отличаются нефти и по составу фенантренов. Концентрация отдельных групп фенантренов во всех нефтях снижается в ряду: диметилфенантрены> метилфенантрены> триметилфенантрены> фенантрен. Содержание моноаренов в смеси УВ снижается от миоцена к фундаменту обратно изменению содержания циклогексанов. Среди моноаренов идентифицированы ряды C_{11} – C_{30} алкилбензолов, содержащих одну неразветвленную гомологические алифатическую цепь, алкилтолуолов, алкилксилолов, а также следовые количества алкилтриметилбензолов. В составе изомеров алкилтолуолов, как метилалкилциклогексанов, во всех исследованных нефтях преобладают орто-изомеры, что свидетельствует об отсутствии жесткого термического воздействия при нефтеобразовании.

Содержание тетрааренов в нефтях месторождения Белый Тигр невелико и минимально в нефти из миоцена. В составе тетрааренов идентифицированы пирен, флуорантен, хризен, бензантрацен, их метил- и диметилзамещенные производные. Среди тетрааренов во всех нефтях преобладают пирены, среди метилпиренов — 4-метилпирен. Пентациклические арены, содержание которых в нефтях изменяется от 0,001 % от суммы идентифицированных УВ в нефти из миоцена до 0,005 % в нефти из фундамента, во всех нефтях представлены бензфлуорантенами, бензпиренами и их метилзамещенными гомологами.

Таким образом, состав ароматических УВ показывает близость исследованных нефтей из осадочной толщи и фундамента и, кроме того, отсутствие жесткого термического воздействия при их образовании.

Состав углеводородов РОВ осадочных и кристаллических пород

В составе идентифицированных УВ всех исследованных пород, как и в нефтях, доминируют парафиновые структуры (табл. 1). Во всех породах в РОВ присутствуют олеанан и трициклический терпан C_{30} , концентрация гаммацерана невысока, а в смеси метилалкилциклогексанов состава C_{13} — C_{36} во всех образцах преобладают ортометилзамещенные формы. Нефти и ОВ осадочных пород характеризуются величинами Π/Φ

2,2–3,0, отвечающими окислительной среде накопления исходного OB, терпаны преобладают над стеранами. Для РОВ отложений осадочного чехла месторождения Белый Тигр, как и для нефтей, характерна высокая концентрация сесквитерпанов (66–76 % от суммы терпанов),

Содержание ароматических УВ, представленных моно-, би-, три-, тетрапентациклическими структурами, в РОВ пород выше, чем в нефтях (9-12 % от суммы идентифицированных УВ в кристаллических и 16-25 % – в осадочных породах). Среди них повышена доля тетра- и пентациклических аренов. Все это может быть связано с большей полярностью ароматических УВ по сравнению с насыщенными и обогащением ими адсорбированного породами остаточного ОВ. Но как и в нефтях, в осадочных породах в концентрациях присутствуют би-И трициклические В максимальных арены. кристаллических породах доля биаренов существенно меньше за счет высокого содержания моноаренов, хотя в их молекулярном составе различия незначительны. алкилтолуолов, как и в нефтях, во всех породах преобладают орто-изомеры. Близки нефти и POB и по распределению изомеров ди- и триметилнафталинов, ди- и триметилфенантренов.

ОВ кристаллических пород отличается от нефтей и РОВ осадочных пород низкими значениями отношения пристана к фитану (П/Ф 1,2–1,3), указывающими на восстановительные условия его отложения. Отличается оно, кроме того, низким содержанием в смеси терпанов бициклических структур (15–30 % отн.), повышенным содержанием секогопанов, стеранов и гаммацерана.

В целом состав УВ указывает на различную фациальную природу ОВ, присутствующего в кристаллических и осадочных породах, а сопоставление его с составом УВ нефтей – на вероятное генетическое единство нефтей и ОВ перекрывающих фундамент олигоцен-миоценовых отложений.

Таким образом, совокупность данных о составе УВ нефтей и РОВ пород месторождения Белый Тигр указывает на генетическое родство нефтей в отложениях олигоцена и фундамента, и, наряду с фациально-генетической природой олигоценмиоценовых отложений, свидетельствует об образовании залежей в трещиноватых гранитоидах за счет миграции нефти из олигоценовых осадочных пород, прилегающих к выступам фундамента.

Глава 4. Состав углеводородов битумов и экстракта из базальтов севера Хакасии

В составе идентифицированных УВ всех изученных битумов и экстракта из базальтов преобладают насыщенные структуры (табл. 2). Среди насыщенных УВ в одном из твердых

битумов ($TБ_{cx}$) и в экстракте из вмещающих битум базальтов (ES) доминируют алканы, в остальных – соединения нафтеновой природы (рис. 5).

Таблица 2 – Содержание групп идентифицированных УВ в битумах и экстракте из базальтов

	Битумы, базальт						
Углеводороды	ВБ	ТБкрг	ТБех	Б3			
	Содержание УВ, % отн.						
Алканы	1,3	26,8	78,3	73,2			
Алкилциклогексаны	0,2	0,6	2,3	2,2			
Метилалкилциклогексаны	0,1	0,4	1,3	1,0			
Терпаны	49,2	30,7	1,1	0,8			
Стераны	45,5	28,1	0,3	0,1			
Сумма насыщенных УВ	96,3	86,4	83,2	77,4			
Моноарены	1,1	1,1	0,6	1,6			
Биарены	0,7	2,9	1,9	4,7			
Триарены	1,4	6,3	8,5	11,5			
Тетраарены	0,5	2,8	5,5	4,5			
Пентаарены	0,0	0,5	0,2	0,3			
Сумма ароматических УВ	3,7	13,6	16,8	22,6			

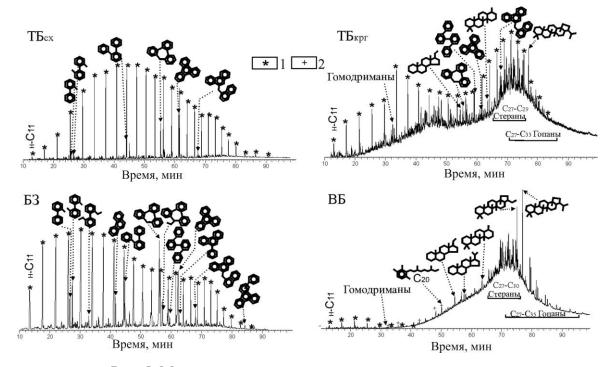


Рис. 5. Масс – хроматограммы по полному ионному току битумов и экстракта из базальтов Хакасии: 1 – н-алканы; 2 – арилизопреноиды

Состав насыщенных углеводородов

Среди насыщенных УВ всех исследованных битумов идентифицированы структурные группы алканов, алкилциклогексанов, стеранов, включая прегнаны, секогопанов, би-(сесквитерпаны), три-, тетра- и пентациклических терпанов.

Содержание алканов увеличивается в ряду $B \bar{b} - T \bar{b}_{\kappa pr} - \bar{b} \bar{3} - T \bar{b}_{cx}$, и в битуме $T \bar{b}_{cx}$ они резко доминируют над остальными группами $Y \bar{b}$ (рис. 5).

В вязком битуме (ВБ) присутствует ряд н-алканов от C_{11} до C_{17} с максимумом, приходящимся на C_{13} , высокомолекулярные гомологи отсутствуют. В твердых битумах и

базальте идентифицированы н-алканы от C_{11} до C_{34} – C_{36} . В образце твердого битума $TE_{\kappa pr}$ распределение н-алканов бимодально с основным максимумом, приходящимся на C_{16} и дополнительным — на C_{29} . Для н-алканов битума TE_{cx} максимум отмечен в области C_{17} – C_{19} , а в экстракте из базальтов — на C_{15} .

Изопреноидные алканы в битумах представлены норпристаном, пристаном (П) и фитаном (Ф) с повышенным содержанием последнего в твердых битумах (П/ Φ =0,6–0,8) и близким содержанием П и Ф (1,0) в вязком битуме. Это указывает на восстановительные условия накопления исходного органического материала всех исследованных битумов. Содержание изопреноидных алканов по отношению к н-С₁₇ и н-С₁₈ (Кі) резко снижается при переходе от вязкого (1,1) к твердым битумам (0,16–0,07). Низкие значения Кі могут быть обусловлены воздействием высокой температуры, но в случае битума ТБ_{крг} термическое воздействие видимо нивелируется процессом биодеградации, в результате величина Кі имеет повышенное по сравнению с ТБ_{сх} значение.

Содержание алкил- и метилалкилциклогексанов меняется пропорционально изменению содержания алканов. Ими обогащены битум TE_{cx} , в котором они представлены C_{12} – C_{32} гомологами, и экстракт E3 (C_{10} – C_{35}). В вязком битуме и TE_{kpr} присутствуют только низкомолекулярные соединения C_{12} – C_{18} и C_{12} – C_{15} , соответственно.

Стераны и прегнаны являются одними из основных среди насыщенных УВ в ВБ и ТБкрг. Прегнаны в них представлены C_{21} и C_{22} гомологами, в $TБ_{\text{крг}}$ также C_{19} . Во всех битумах и БЗ преобладают регулярные стераны состава C_{27} – C_{29} (рис. 6).

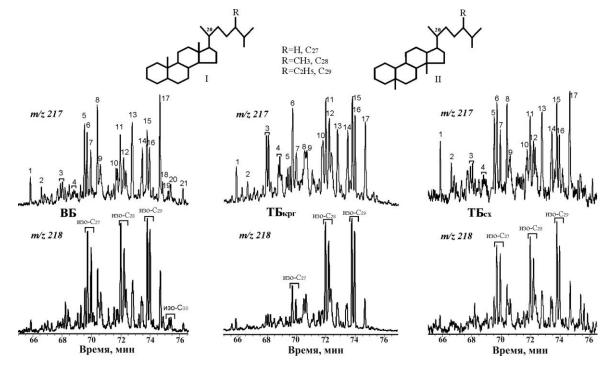


Рис. 6. Участки масс—фрагментограмм стеранов и диастеранов (m/z =217 и m/z =218) битумов, их строение: I – регулярные стераны (пики 6–8, 10–21), II – диастераны (пики 1–6, 9)

В БЗ и битумах ВБ и $TБ_{cx}$ стеранов изо-строения больше чем α -стеранов, в $TБ_{крг}$ они присутствуют в близких концентрациях. Содержание C_{27} , C_{28} и C_{29} стеранов в ВБ и $TБ_{cx}$ незначительно увеличивается с ростом молекулярной массы (отношение C_{27} к C_{29} составляет 0,76 и 0,72). В $TБ_{крг}$ концентрация стеранов состава C_{27} существенно ниже остальных ($C_{27}/C_{29} = 0,32$).

Среди C_{27} — C_{29} диастеранов в битумах ВБ и TE_{cx} и экстракте БЗ, как и среди стеранов, содержание отдельных групп гомологов различается незначительно, а битум $TE_{крг}$ отличается низкой концентрацией гомологов C_{27} (12 % отн.) и повышенной долей диастеранов C_{28} (68 % отн.). Это свидетельствует о возможной иной природе исходного ОВ битума $TE_{крг}$, чем битумов из обнажений долины р. Сохочул.

Содержание в смеси терпанов бициклических структур (сесквитерпанов) растет от 0,4 % в ВБ, до 26 % в ТБ_{крг}, до 60 % в ТБ_{сх}. Все битумы характеризуются высоким содержанием $8\beta(H)$ -гомодримана в смеси сесквитерпанов. Нордриманы (C_{14}) в заметной концентрации присутствуют в ВБ, ТБ_{сх} и БЗ. В ТБ_{крг} зафиксированы только следы этих соединений. Среди C_{15} дриманов в вязком битуме доминирует $8\beta(H)$ -дриман. В твердых битумах и экстракте БЗ преобладают его изомеры, при этом в битуме ТБ_{крг} $8\beta(H)$ -дриман присутствует в очень низкой концентрации, чем существенно отличает этот битум от остальных.

Во всех битумах идентифицированы трициклические терпаны состава C_{19} — C_{26} , в вязком битуме также C_{28} — C_{30} трицикланы. В экстракте из базальтов эти соединения присутствуют в следовых количествах. В битумах ВБ и T_{6x} среди трицикланов преобладает гомолог C_{23} , в T_{6x} более высока концентрация соединений с меньшей молекулярной массой (C_{19} и C_{21}). Тетрациклические терпаны не обнаружены в E_{3} , в битумах представлены единственным C_{24} соединением, содержание которого относительно высоко в битумах E_{6x} и E_{6x} .

Насыщенные УВ пентациклического строения являются основными представителями терпанов ВБ и $TБ_{\rm kpr}$. В $TБ_{\rm cx}$ и БЗ они присутствуют в существенно более низкой концентрации и представлены Тѕ и Тт изомерами C_{27} гопана, причем в экстракте БЗ присутствует только 27Тѕ изомер, C_{29} – C_{35} гопанами (в БЗ и $TБ_{\rm cx}$ надежно идентифицированы только C_{29} – C_{33}), C_{29} – C_{31} моретанами, диагопаном C_{30} , и гаммацераном. Во всех исследованных образцах среди пентациклических терпанов доминирует C_{30} -гопан. Содержание гомогопанов снижается с увеличением молекулярной массы. Повышенным содержанием гаммацерана отличается от остальных битум $TБ_{\rm kpr}$. Показатели термической преобразованности ОВ (27Tѕ/27Tm и C_{29} Тѕ/ C_{29}) указывают на низкую термическую преобразованность вязкого битума (0,9 и 0,2) и более высокую преобразованность твердых битумов (1,4–1,5 и 0,34–0,78).

Соединения ряда секогопанов присутствующие только в ВБ и $TБ_{крг}$, представлены C_{27} , C_{29} – C_{32} структурами с максимальным содержанием C_{29} и могут быть продуктами биодеградации этих битумов.

Таким образом, отдельные разновидности битумов Хакасии различаются составом насыщенных УВ. Выявленные особенности могут быть обусловлены протеканием процессов биодеградации, приводящих к снижению содержания н-алканов и увеличению относительного содержания изопреноидных алканов и полициклических структур. По этим показателям состава существенной микробиальной переработке подвергался вязкий битум и ТБ_{крг}. Состав гопанов свидетельствует о более высокой термической преобразованности твердых битумов, а данные о составе стеранов указывают на специфический источник исходного ОВ битума из района Красной Горки (ТБ_{крг}), отличающийся от источника и условий накопления ОВ сохочульских битумов (ВБ и ТБ_{сх}).

Состав ароматических углеводородов

Содержание ароматических УВ увеличивается в ряду вязкий битум, твердые битумы, экстракт из базальтов. Состав аренов, мало зависимый от влияния вторичных факторов гипергенеза, может способствовать более четкому пониманию основных процессов, с которыми связано битумообразование.

Ароматические УВ исследованных **твердых битумов и экстракта из базальтов** содержат в молекулах от одного до пяти бензольных колец. Наши исследования позволили идентифицировать в их составе широкий спектр соединений, строение которых приведено на рис. 7.

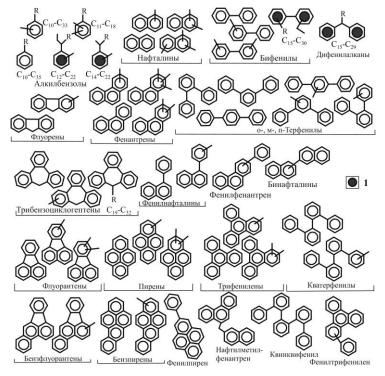


Рис.7.
Ароматические УВ, идентифицированные в твердых битумах: 1
— соединения, присутствующие только в битуме и экстракте из миндалекаменных базальтов

Среди моноаренов твердых битумов и экстракта из базальтов присутствуют налкилбензолы состава C_{10} — C_{35} с преобладанием гомологов C_{21} — C_{27} , алкилтолуолы и алкилксилолы. Алкилтолуолы с алкильной цепью нормального строения представлены орто, мета- и пара-изомерами. В ТБсх и БЗ резко преобладают пара-изомеры алкилтолуолов. Наряду с ними в ТБсх и БЗ содержатся две группы гомологов алкилтолуолов с разветвленной алкильной цепью. Анализ масс-спектров и времени удерживания отдельных соединений (рис. 8) показал, что в первом ряду, включающей C_{14} — C_{22} гомологи, по α -атому алкильной цепи присоединена метильная, а во второй (C_{12} — C_{22}) — этильная группа. Распределение гомологов в каждой из этих групп в битуме ТБсх и экстракте идентично.

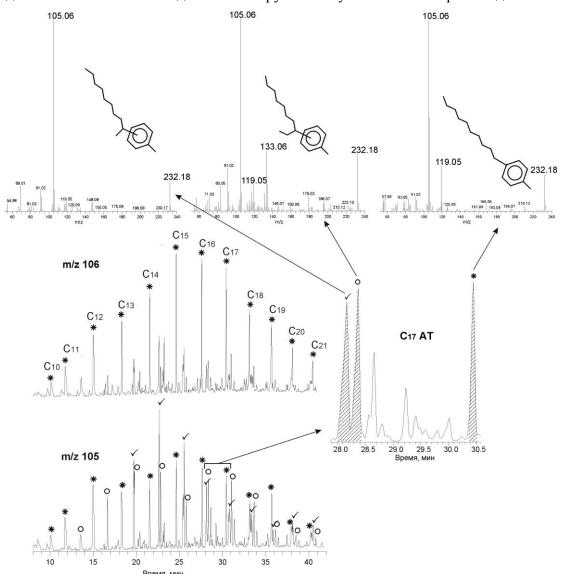


Рис. 8. Участки масс-фрагментограмм и масс-спектры отдельных пиков алкилтолуолов экстракта из базальтов

Биарены в твердых битумах представлены нафталином, бифенилом и их метилзамещенными гомологами. В $TБ_{cx}$ и EB обнаружены также отсутствующие в битуме TE_{kpr} гомологические серии этилалкилбифенилов и дифенилалканов (рис. 9). В TE_{kpr} преобладают нафталины, в битуме TE_{cx} и экстракте EB — бифенилы.

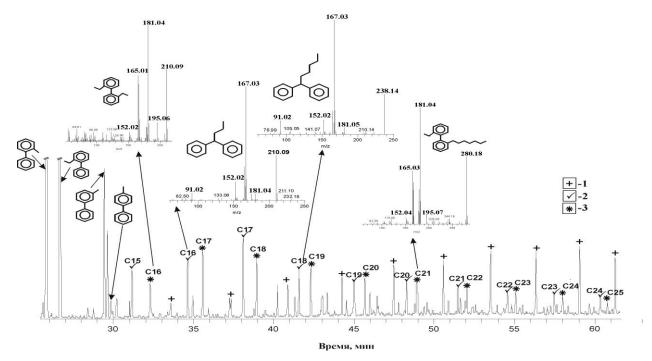


Рис. 9. Участок масс-фрагментограммы (m/z=167) и масс-спектры отдельных соединений битума TB_{cx} : 1 – н-алканы; 2 – дифенилалканы; 3 – этилалкилбифенилы

Гомологи нафталина в битуме T_{Cx} и экстракте B_{CS} содержат в молекулах от одного до трех, в битуме T_{Kpr} – до четырех метильных заместителя. Их содержание снижается с увеличением числа метильных заместителей в молекулах. Среди бифенилов в T_{Kpr} преобладают метилзамещенные, а в T_{Cx} и экстракте B_{CS} – этилалкилбифенилы. Ряд этилалкилбифенилов включает C_{15} — C_{30} гомологи с максимумом, приходящимся на C_{17} — C_{18} . Относительное содержание в смеси биаренов дифенилалканов, представленных C_{15} — C_{29} гомологами, по сравнению с концентрацией отдельных групп бифенилов ниже, но выше, чем содержание нафталинов.

Трициклические ароматические УВ представляют основную группу аренов всех исследованных разностей и представлены фенантренами с преобладанием незамещенной структуры, следами флуоренов, терфенилами, трибензоциклогептанами, а в TE_{cx} и EE_{cx} и EE_{cx

Относительное содержание отдельных соединений среди тетрациклических ароматических УВ битума $TБ_{cx}$ и БЗ снижается в ряду: трифенилен > кватерфенил > фенилфенантрен. В битуме $TБ_{крr}$ на первое место выступает кватерфенил. Флуорантен, пирен и бинафталин присутствуют в невысоких концентрациях.

В составе пентааренов преобладает 1,9-(1-нафтилметил) -фенантрен (73–49 % от суммы пентааренов), существенно ниже концентрация квинквифенила и бензпирена (9,3–13,8 %). Содержание фенилпирена и фенилтрифенилена (0,5–11,1 % и 1,6–6,5 %) максимально в экстракте из базальтов, а бензфлуорантена (1,5–5,3 %) – в ТБ_{сх}.

Набор нафталинов, а также алкил-, алкилметил- и алкилдиметилбензолов, бифенила и метилбифенилов, флуоренов, фенантренов, пиренов и флуорантенов, идентифицированных в твердых битумах Хакасии и экстракте из базальтов (рис. 7), в той или иной концентрации обычно присутствует в нефтях, природных битумах и РОВ осадочных пород. Терфенилы, бензфлуорантены и бензпирены в невысоких концентрациях также иногда встречаются в ОВ ископаемых осадков. От битумов, типичных для осадочных пород, твердые битумы Хакасии отличает наличие в них, причем в высоких концентрациях, полифенилов, содержащих больше трех фенильных фрагментов (рис. 10), бинафталина, фенилзамещенных нафталина, трифенилена, 1,9-(1-нафтилметил)-фенантрена, 9Hфенантрена. пирена трибензоциклогептена и ряда его C_{21} – C_{30} алкилзамещенных гомологов, а также существенно более высокие по сравнению с ОВ осадочной толщи концентрации терфенилов, трифенилена и бензпирена.

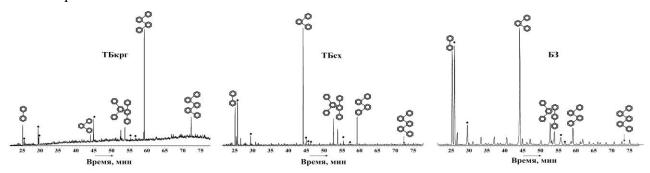


Рис. 10. Фрагменты масс-хроматограмм (m/z 154+168+230+244+306+382) полифенилов твердых битумов и экстракта из базальтов: * – метилзамещенные структуры

Все эти соединения могли образоваться в процессе пиролиза ОВ при контакте пород с жидкой магмой. Так образование би-, тер- и кватерфенилов, фенилнафталинов, бинафталинов и трифенилена было установлено ранее в экспериментах по пиролизу бензола и нафталина, многих из них — при пиролизе нефтяных асфальтенов. Образование квинквифенила может быть следующей стадией образования полифенилов — присоединением фенильного радикала к кватерфенилу, а трибензоциклогептена — следствием дегидроциклизации метилзамещенного орто-терфенила при пиролизе, как это было доказано для трифенилена — продукта пиролитической циклизации незамещенного орто-терфенила. Аналогичные реакции могли привести к образованию всего набора

полициклических ароматических УВ, обнаруженных в твердых битумах Хакасии. Особенностью состава аренов битума из миндалекаменных базальтов и экстракта из вмещающих его базальтов является наличие ароматических структур с длинными алкильными цепями. Дифенилалканы могли образоваться в результате соединения фенильного и метилалкилфенильного радикалов, исходными молекулами которых обогащен этот битум. К сожалению, остается пока не выясненным, за счет чего образуются присутствующие в миндалекаменных базальтах толуолы с разветвленными алкильными цепями и этилалкилбифенилы.

Битумы из миндалекаменных базальтов и долеритовой интрузии различаются содержанием отдельных полифенилов (рис. 10). Основным соединением среди полифенилов в битуме из долеритовой интрузии (ТБ_{крг}) является кватерфенил, в достаточно высокой концентрации присутствуют также квинквифенил, п-терфенил. В битуме из миндалекаменных эффузивных базальтов (ТБ_{сх}) и экстракте из базальтов преобладают отерфенил, бифенил и метилбифенил. Мета- и пара- терфенилы, а также кватер- и квинквифенилы находятся в малом количестве. Такое распределение полифенилов в битуме из долеритовой интрузии свидетельствует о более высоких температурах и длительности пиролиза ОВ по сравнению с битумом из миндалекаменных базальтов.

Таким образом, в природных твердых битумах Хакасии присутствуют ароматические УВ, происхождение части которых может быть связано с диа- и катагенетической трансформацией ОВ в осадочной толще, а части – с процессами пиролиза. При этом на состав ароматических УВ и относительное содержание отдельных структур, наряду с силой термического воздействия, влияет также состав исходного ОВ, подвергавшегося этому воздействию.

Вязкий битум из трещиноватых базальтов (ВБ) отличается менее широким набором ароматических УВ. В нем отсутствуют пентациклические арены, не обнаружены все те группы фенилзамещенных структур и полифенилов, происхождение которых может быть отнесено за счет пиролитического воздействия на ОВ. Основными структурными группами ароматических УВ этого битума являются фенантрены и алкилтриметилбензолы.

Алкилтриметилбензолы — арилизопреноиды состава C_{13} — C_{26} , у которых алкильная цепь длиной от C_4 до C_{17} имеет изопреноидное строение. Среди них преобладает гомолог C_{20} , содержащий в алкильной цепи одиннадцать атомов углерода.

Биарены представлены нафталином (H), бифенилом (БФ) и их метилзамещенными гомологами, среди которых преобладают монометилзамещеные соединения (рис. 11A). Основная часть фенантренов представлена изомерами ди- (39 % от суммы триаренов) и триметилзамещенных соединений (46 %). Концентрация незамещенного фенантрена

невелика (рис. 11Б). Содержание флуорена (Фл) и его метилзамещенных форм в смеси триаренов составляет 0,5 % отн.

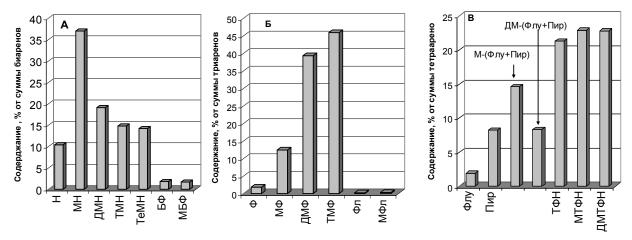


Рис. 11. Групповой состав би- (А), три- (Б) и тетрааренов (В)

Тетраарены представлены флуорантеном (Флу), пиреном (Пир), трифениленом (ТФН) и изомерами их метил- и диметилзамещенных гомологов с преобладанием изомеров, содержащих один метильный заместитель (рис. 11В).

Ароматические УВ, идентифицированные в вязком битуме, являются типичными для нефтей, битумов и РОВ осадочной толщи и могли образоваться из биологических предшественников при погружении материнской толщи.

Состав довольно редко встречающихся арилизопреноидов – одной из основных групп ароматических УВ битума из трещиноватых базальтов, свидетельствует об их родстве с ароматическими каротиноидами изорениератеном и β-изорениератеном. Эти каротиноиды присутствуют в фотосинтетических зеленых серных бактериях (Chlorobiaceae), которые существуют в строго анаэробной среде и для их метаболизма требуется свет и H₂S. Следовательно, наличие арилизопреноидов в битуме обеспечивает свидетельство того, что накопление ОВ, впоследствии генерировавшего этот нафтид, протекало в фотической зоне эвксинного бассейна.

Совокупность исследования УΒ битумов, результатов присутствующих магматических породах на севере Хакасии, показывает, что битум в трещиноватых базальтах не подвергался жесткому термическому воздействию и сформировал залежь в уже застывшей базальтовой магме. Углеводородный флюид заполнил трещины в базальтах, видимо, в результате перетока из расформированной залежи нефти в осадочных породах. Нефтематеринскими генерировавшими нефть, породами, ЭТУ a впоследствии биодеградированный вязкий битум, служили отложения, накапливавшиеся в фотической зоне эвксинного бассейна. Битумы, залегающие в пределах долеритовой интрузии и в миндалекаменных базальтах, испытывали воздействие очень высоких температур. Это

свидетельствует о том, что органический материал находился в контакте с жидкой магмой, во многом определившем особенности состава ароматических УВ битумов. Длительность воздействия экстремальных температур в случае битума в долеритовой интрузии была существенно больше, чем в миндалекаменных базальтах. Можно предположить, что битумы входили в состав ксенолитов, захваченных магматическим расплавом, где подвергались контактовому метаморфизму. Время остывания расплава при излиянии его на поверхность было меньше и, как следствие, преобразование органического материала в миндалекаменных базальтах остановилось раньше, и в битуме образовались преимущественно промежуточные продукты пиролиза. Состав ОВ, входившего в состав ксенолитов на участках вблизи высоты Красная Горка и урочища Сохочул, был разным.

выводы

- 1. В составе идентифицированных УВ нефтей, залегающих в породах миоцена, олигоцена и фундамента месторождения Белый Тигр, преобладают насыщенные углеводороды. Среди них обнаружены структурные группы алканов (C_{11} – C_{39}), алкилциклогексанов (C_{11} – C_{37}), метилалкилциклогексанов (C_{13} – C_{36}), стеранов (C_{27} – C_{29}), секогопанов (C_{27} , C_{29} – C_{31}), сесквитерпанов (C_{14} – C_{16}), три- (C_{20} – C_{35}), тетра- (C_{24} и C_{30}) и пентациклических (C_{27} , C_{29} – C_{35}) терпанов. Основной вклад в состав насыщенных УВ вносят н-алканы (85–88%). Суммарное содержание ароматических УВ, представленных моно-, би-, три-, тетра- и пентациклическими структурами, в смеси УВ не превышает 4,6 % отн. Совокупность данных о составе УВ показывает генетическое родство нефтей в отложениях олигоцена и фундамента.
- 2. Нефти месторождения Белый Тигр, залегающие в породах олигоцена и фундамента, и РОВ, присутствующее в осадочных породах, имеют сходство по составу и относительному содержанию изопреноидных алканов, алкилциклогексанов, метилалкилциклогексанов, би- и трициклических терпанов, секогопанов, а также три- и тетрааренов. В них присутствуют олеанан, гаммацеран и тетрациклический терпан С₃₀. Все это, наряду с фациальногенетической природой олигоцен-миоценовых отложений, свидетельствует об образовании залежей в трещиноватых гранитоидах месторождения Белый Тигр за счет миграции нефти из олигоценовых осадочных пород, прилегающих к выступам гранитного фундамента.
- 3. Обнаруженный в РОВ и нефтях тетрациклический терпан C_{30} может служить уникальным дополнительным параметром для корреляций нефть—нефть и РОВ—нефть в районе месторождения Белый Тигр.
- 4. Основными идентифицированными УВ вязкого битума, присутствующего в трещиноватых базальтах Хакасии, являются стерановые и терпановые структуры. Содержание алканов, представленных гомологами C_{11} – C_{17} , невелико и составляет 1,3 % от

суммы идентифицированных УВ. Среди стеранов преобладают изомеры C_{29} . Терпаны включают: сесквитерпаны (C_{14} – C_{16}), трицикланы (C_{19} – C_{30}), гопаны (C_{27} , C_{29} – C_{35}), гаммацеран и секогопаны (C_{27} , C_{29} – C_{32}) с существенным преобладанием гопанов. В составе ароматических УВ, включающих моно-, би-, три- и тетрациклические структуры, доминируют триметилзамещенные фенантрены и алкилтриметилбензолы с изопреноидной алкильной цепью. Особенности состава УВ свидетельствуют о существенной микробиальной переработке этого битума. Битум не испытывал жесткого термического воздействия и сформировал залежь в уже застывшей базальтовой магме видимо в результате перетока из расформированной залежи нефти в осадочных породах. Материнскими породами, генерировавшими эту нефть, впоследствии биодеградированный вязкий битум, могли служить отложения, накапливавшиеся в фотической зоне эвксинного бассейна.

- 5. Природные твердые битумы, присутствующие в миндалинах эффузивных базальтов и долеритовой интрузии на севере Хакасии характеризуются наличием алканов, алкилциклогексанов, соединений стеранового и терпанового рядов, моно-, би-, три-, тетра- и пентациклических ароматических углеводородов и отличаются от других нафтидов набором и содержанием отдельных ароматических структур. Среди ароматических УВ твердых битумов, представляющих 14–17 % всех идентифицированных в них УВ, повышены терфенилов, трифенилена и бензпирена, присутствуют полифенилы, концентрации содержащие 2-5 фенильных фрагментов, бинафталин, 1,9-(1-нафтилметил)-фенантрен, 9Нтрибензоциклогептен и ряд его алкилзамещенных гомологов от C_{20} до C_{32} , фенилзамещенные производные нафталина, фенантрена, пирена и трифенилена. В битуме из миндалекаменных базальтов, кроме того, идентифицированы не обнаруженные ранее в других природных объектах гомологические ряды α - метил- $(C_{14}-C_{22})$ и α -этилалкилтолуолов $(C_{12}-C_{22})$, этилалкилбифенилов $(C_{15}-C_{30})$ и дифенилалканов $(C_{15}-C_{29})$.
- 6. На состав УВ твердых битумов Хакасии значительное влияние оказали процессы пиролиза при контакте с жидкой базальтовой магмой. Образование включений битумов в базальтах могло быть следствием захвата магмой пород с высоким содержанием ОВ. При этом состав ОВ, входившего в состав ксенолитов на участках вблизи высоты Красная Горка и урочища Сохочул Хакасии, был различным.
- 7. Состав углеводородов метанол—хлороформенного экстракта из миндалекаменного базальта и контактирующего с ним битума различаются незначительно, что может быть следствием диффузии битуминозных компонентов в прилегающие породы.
- 8. Выявленные особенности состава УВ битумов наличие трибензоциклогептенов, кватер- и квинквифенилов, бинафталина, фенилзамещенных нафталина, фенантрена, пирена

и трифенилена, повышенное содержание трифенилена, бензпирена, би- и терфенилов – могут служить признаком воздействия магмы на OB осадочных пород.

Основное содержание диссертации изложено в следующих работах:

- 1. Серебренникова О.В. Генезис нефтей месторождения Белый Тигр (Вьетнам) по данным о составе насыщенных ациклических углеводородов / О.В. Серебренникова, Ву Ван Хай, Ю.В. Савиных, Н.А. Красноярова // Известия Томского политехнического университета. 2012. Т. 320. № 1 С. 134–137.
- 2. Savinykh Y.V. Compositional Features of Hydrocarbons in Crude Oils from South Vietnam and West Siberia / Y.V. Savinykh, Vu Van Hai, O.V. Serebrennikova, L.D. Stakhina // Journal of Siberian federal university. Chemistry. 2012. T. 5. N = 1 P. 41–51.
- 3. Ву Ван Хай. Геохимические характеристики нефтей и рассеянного органического вещества пород фундамента месторождения Белый Тигр (Вьетнам) / Ву Ван Хай, О.В. Серебренникова, Ю.В. Савиных, Л.Д. Стахина // Современные проблемы науки и образования. 2012. № 4; http://www.science-education.ru/104-6633.
- 4. Ву Ван Хай. Состав и источники нефти в терригенных и вулканогенных коллекторах месторождения Белый Тигр (Вьетнам) / Ву Ван Хай, О.В. Серебренникова, Ю.В. Савиных // Вестник Томского государственного университета. 2012. № 361. С.165–170.
- 5. Ву Ван Хай. Углеводороды битумных включений в магматических породах на севере Хакасии / Ву Ван Хай, О.В. Серебренникова // Вестник Томского государственного университета. – 2012. – № 362. – С.173–177.
- 6. Ву Ван Хай. Состав насыщенных углеводородов битумов северной Хакасии / Ву Ван Хай, О.В. Серебренникова // Известия Томского политехнического университета. 2012. Т. 321. № 3 С. 121—125.
- 7. Серебренникова О.В. Состав ароматических углеводородов битумов северной Хакасии / О.В. Серебренникова, Ву Ван Хай, А.Р. Ахмедова // Известия Томского политехнического университета. 2012. Т. 321 № 3 С. 125–129.
- 8. Нгуен Хоай Чунг. Коллекторские свойства пород продуктивных комплексов месторождения Белый Тигр / Нгуен Хоай Чунг, Ву Ван Хай // XVI Международный научный симпозиум студентов и молодых ученых имени академика М.А. Усова.— Томск.—2009. С. 382—384.
- 9. Нгуен Хоай Чунг. Условия образования трещиноватых коллекторов в эффузивных породах, вмещающих залежи нефти, на месторождении Белый Тигр / Нгуен Хоай Чунг, Ву Ван Хай // XVI Международный научный симпозиум студентов и молодых ученых имени академика М.А. Усова. Томск. 2009. С. 384–386.

- 10. Ву Ван Хай. Стратиграфия и литология Меконгского бассейна Вьетнама // IV Всероссийская научно-практическая конференция «Научная инициатива иностранных студентов и аспирантов российских вузов». –Томск. 2010. С.68–70.
- 11. Savinykh Y.V. Comparative characteristics of molecular composition of basement oils in various regions / Y.V. Savinykh, Vu Van Hai // Abstracts of the 25th International Meeting Organic Geochemistry. Interlaken, Switzerland. 2011. P. 442.
- 12. Ву Ван Хай. Сравнительная характеристика молекулярного состава нефтей и рассеяного органического вещества пород фундамента месторождения Белый Тигр Вьетнама / Ву Ван Хай, Ву Тхуй Нган // XVI Международный научный симпозиум студентов и молодых ученых имени академика М.А. Усова. Томск. 2012. Т. 1. С. 250–252.
- 13. Vu Van Hai. Biomarker Characteristics of basement oils from White Tiger field on the south self of Vienam / Vu Van Hai, Vu Thuy Ngan // XVI Международный научный симпозиум студентов и молодых ученых имени академика М.А. Усова. Томск. 2012. Т. 2. С. 805–806.
- 14. Vu Van Hai. Compositional features of alkanes in basement oils from White Tiger Field (Vietnam) / Vu Van Hai, Vu Thuy Ngan // XVI Международный научный симпозиум студентов и молодых ученых имени академика М.А. Усова. –Томск. 2012.– Т. 2. С. 806–807.
- 15. Ву Ван Хай. Сравнительная характеристика состава насыщенных углеводородов битумов Хакасии // VI Всероссийский смотр научных и творческих работ иностранных студентов и аспирантов вузов России. Томск. 2012. –С. 328–330.
- 16. Ву Ван Хай. Геохимическая характеристика нефтей и рассеянного органического вещества пород фундамента месторождения Белый Тигр Вьетнама // VI Всероссийский смотр научных и творческих работ иностранных студентов и аспирантов вузов Росси. Томск. 2012. С. 321–324.
- 17. Серебренникова О.В. Состав углеводородов и происхождение битумов в базальтах на севере Хакасии / О.В. Серебренникова, Ву Ван Хай // VIII Международная конференция «Химия нефти и газа».—Томск.—2012. С. 138—142.

Автор выражает глубокую признательность за помощь в проведении исследований и полезные консультации заведующей лабораторией природных превращений нефти ИХН СО РАН д-ру хим. наук, профессору Серебренниковой О.В., ст. науч. сотр., д-ру хим. наук Савиных Ю.В., ст. науч. сотр., канд. г-м. наук Краснояровой Н.А., а также всему коллективу лаборатории природных превращений нефти ИХН СО РАН.