Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре

О волновой природе напряжений и деформаций и механизме концентрации пи

<< < (32/79) > >>

Устьянцев Валерий Николаевич:
Большая масса газообразных планет также позволяет учитывать большое количество и разнообразие их спутников . Некоторые из них являются астероидами или транснептуновыми объектами, захваченными гравитационным полем планет |
Гигантская планета.
Химический состав атмосфер газовых гигантов Солнечной системы в сравнении с Землей

Составная часть    Юпитер    Сатурн    Уран    Нептун    земля
Водород (H 2 )    87%    93%    83%    80%    0,000055%
Гелий (He)    13%    5%    15%    19%    0,000524%
Метан (C H 4 )    0,1%    0,2%    2,3%    1,5%    0,0001745

Устьянцев Валерий Николаевич:
Строение планет и их химический состав

Строение планет слоистое. Выделяют несколько сферических оболочек, различающихся по химическому составу, фазовому состоянию, плотности и другим характеристикам.

Все планеты земной группы имеют твердые оболочки, в которых сосредоточена почти вся их масса. Венера, Земля и Марс обладают газовыми атмосферами. Меркурий практически лишен атмосферы. Окутан плотной атмосферой крупнейший спутник Сатурна -- Титан, который по размерам больше планеты Меркурий. Титан -- единственный спутник в нашей Солнечной системе, обладающий постоянной и плотной газовой атмосферой, которая состоит главным образом из азота и метана. Запущенная в 1997 г. к Сатурну автоматическая космическая станция «Кассини», уже передавшая изображения Сатурна, в 2004 г. должна сблизиться с Титаном, спустить на его поверхность, «прититанить» на парашюте космический зонд «Гюйгенс», который будет передавать информацию о состоянии атмосферы и поверхности Титана (ее температура -- 180°С).

Земля имеет жидкую оболочку из воды -- гидросферу, а также биосферу (результат прошлой и современной деятельности живых организмов). Аналогом земной гидросферы на Марсе является криосфера -- лед в полярных шапках и в грунте (вечная мерзлота). Одна из загадок Солнечной системы -- дефицит воды на Венере.

Характеристики твердых оболочек планет относительно хорошо известны лишь для Земли. Модели внутреннего строения других планет земной группы строятся главным образом на основании данных о свойствах вещества земных недр. Как и у Земли, в твердых оболочках планет выделяют: кору -- самую внешнюю тонкую (10--100 км) твердую оболочку; мантию -- твердую и толстую (1000--3000 км) оболочку; ядро -- наиболее плотную часть планетных недр.

Ядро Земли, состоящее, скорее всего, из железа, подразделяется на внешнее (жидкое) и внутреннее (твердое); температура в центре Земли оценивается в 4000--5000 К. Жидкое ядро, вероятно, есть также у Меркурия и Венеры; у Марса его, по-видимому, нет.

Наиболее распространены в твердом «теле» Земли железо (34,6%), кислород (29,5%), кремний (15,2%) и магний (12,7%).

Таким образом, планеты земной группы резко отличаются по элементному составу от Солнца и совершенно не соответствуют средней космической распространенности элементов -- очень мало водорода, инертных газов, включая гелий.

Планеты-гиганты обладают иным химическим составом. Юпитер и Сатурн содержат водород и гелий в той же пропорции, что и Солнце. Вероятно, другие элементы также содержатся в пропорциях, соответствующих солнечному составу. В недрах Урана и Нептуна, по-видимому, больше тяжелых элементов.

Недра Юпитера находятся в жидком состоянии, за исключением небольшого ядра, которое представляет собой результат металлизации жидкого водорода. Температура в центре Юпитера около 30 000 К. Химический и изотопный состав Юпитера отражает, по-видимому, состав межзвездной среды, какой она была 5 млрд лет назад. Вместе с тем Юпитер никогда не был настолько горяч, чтобы в нем могли протекать термоядерные реакции. Сатурн по внутреннему строению похож на Юпитер. Строение недр Урана и Нептуна иное: доля каменистых материалов в них существенно больше.

Основными источниками энергии в недрах планет являются радиоактивный распад элементов и выделение гравитационной потенциальной энергии при аккреции (объединении) и дифференциации вещества, его постепенном перераспределении по глубине в соответствии с плотностью -- тяжелые фрагменты тонут, легкие всплывают. На Земле подобное перераспределение еще далеко не завершилось. Такие процессы вызывают перемещения отдельных участков земной коры, деформацию, горообразование, тектонические и вулканические процессы.

Причина вулканических процессов в следующем. В верхней мантии существуют небольшие области, где температура достаточна для плавления ее вещества. Расплавленное вещество (магма), выдавливающееся вверх, прорывается через кору, и происходит вулканическое извержение. Судя по характеру поверхности, среди планет земной группы тектонически наиболее активна Земля, за ней следуют Венера и Марс. При этом важно, что выделяемая Землей тепловая энергия никогда не приводила ее в полностью расплавленное состояние.

Высокой тектонической и вулканической активностью отличаются и спутники дальних планет Солнечной системы, особенно Юпитера и Сатурна. Недавно было зафиксировано самое крупное извержение вулкана в Солнечной системе на спутнике Юпитера, который называется Ио. Площадь этого извержения -- около 2000 км2, а его мощность превышает извержения земных вулканов в 5--6 тысяч раз! Ио -- самое сейсмическое небесное тело во всей Солнечной системе.

Поверхность планет и их спутников формируют, кроме эндогенных (тектонических, вулканических) процессов, и экзогенные -- падение метеорных тел, астероидов, которое приводит к образованию кратеров, эрозия (под действием ветра, осадков, воды, ледников), химическое взаимодействие поверхности с атмосферой и гидросферой и др. Эндогенные и экзогенные процессы определяют рельеф поверхности планет.

Устьянцев Валерий Николаевич:
 Наши знания о составе планет довольно ограниченны. Пока что они основаны на косвенных данных — преимущественно на их массе, средней плотности, размерах и расстояниях от Солнца. Космические полеты дали более обстоятельную информацию о природе верхних слоев Венеры и Марса и доставили в земные лаборатории лунный материал, который оказался близок к составу базальтовых вулканических пород Земли. Однако о внутреннем строении и составе поверхности планет земного типа мы знаем очень мало. Тем не менее основные данные о механических свойствах планет, которые в принципе известны давно, в целом отражают их состав. Все планеты солнечной системы подразделяются на внутренние, или планеты земного типа, и на внешние, или планеты типа Юпитера. К внутренним планетам относятся близкие к Солнцу — Меркурий, Венера, Земля, Марс; к внешним — далекие Юпитер, Сатурн, Уран, Нептун и Плутон. Внутренние планеты — преимущественно твердые каменные тела, поэтому к ним также по своей природе близки астероиды и спутники планет. Наиболее важные характеристики планет представлены в таблице. Таблица 1 Планета Масса Радиус Средняя плотность, г/см3 Средняя плотность при нулевом давлении, г/см3 Скорость убегания, км/с Альбедо Внутренние планеты Луна 0.0123 0,273 3,35 3,31 2,37 0,067 Меркурий 0.0543 0,333 5,62 5.3 4.26 0.056 Венера 0,8136 0.9551 5,09 4,4 10,3 0,76 Земля 1.000 1.000 5,517 4.4 11.2 0.36 Марс 0.0169 0.528 4.00 3.9 5.03 0.16 Малые планеты Астероиды (хондритовые) <0,00013 < 0,058 ~ 3,5 3,5 — — Внешние планеты Юпитер 318,35 10,97 1,35 — 57,5 0,67 Сатурн 95,3 9.08 0,71 — 33,1 0,69 Уран 14,54 3,72 1.58 — 21.6 0.33 Нептун 17.2 3.38 2.47 — 24.6 0.64 Плутон 0,0337 0.54 2.0 — — 0.14 Существенной величиной, по которой мы можем судить о составе планет (общем их составе), является их плотность. Средняя плотность планет (в г/см3) получается как результат деления их массы на объем d=M/V. Из таблицы видно, что средняя плотность планет неодинакова. Внутренние планеты земного типа, сложенные преимущественно твердым материалом, отличаются высокой плотностью (3,35-5,6 г/см3). У внешних планет плотность низкая (1,58-0,68 г/см3), что свидетельствует об их газовом составе. Действительно, Юпитер и близкие к нему планеты, по расчетным данным, состоят в основном из газов, среди которых первое место принадлежит водороду — наиболее распространенному элементу космоса. Преобладающие химические элементы и соединения вещества планет Для понимания химической природы земного шара большое значение имеет сравнение планет земной группы друг с другом и с нашей планетой в целом. Поэтому ниже мы кратко остановимся на характеристике внутренних планет и Луне. Внутренние планеты Меркурий — ближайшая к Солнцу планета — имеет самую высокую плотность. Поскольку период собственного вращения Меркурия равен периоду его обращения вокруг Солнца, то он все время повернут к Солнцу одним полушарием. На освещенной стороне Меркурия температура достигает 625° К, а на темной поверхности, вероятно, всего лишь 10—20° К. На неосвещенной поверхности большинство газов должно замерзать, а на освещенной, горячей стороне, молекулы обычных газов должны приобретать тепловые скорости, превышающие скорость улетучивания с поверхности. Поэтому Меркурий практически не имеет атмосферы. Возможно, на нем есть небольшая неустойчивая аргоновая атмосфера как продукт распада радиоактивного К40, сосредоточенного в твердом теле планеты. Венера по размерам и плотности наиболее приближается к нашей Земле. Она также обладает наиболее мощной, плотной и теплой атмосферой из всех планет земной группы. По данным межпланетных станций «Венера-4, 5, 6, 7», атмосфера планеты на 93—07% состоит из СО2. Обнаружено присутствие О2, N2, H2O. Температура атмосферы у поверхности достигает 747 ±20° К, давление 90 атм. Обилие CO3 можно объяснить процессом разложения карбонатов при высоких температурах. Подобным же образом происходит разложение и других карбонатов с образованием CO2. Свободный кислород на Венере образуется в результате разложения Н2O под действием солнечной радиации. Другой продукт разложения — водород — легко, теряется верхними слоями атмосферы. Это приводит к медленной вековой потере воды, и Венера постепенно высыхает. При высоких температурах поверхности практически вся вода на Венере находится в атмосфере в парообразном состоянии. Наличие светлого водяного пара определяет высокую отражательную способность планеты — 76% падающего на нее солнечного света. Земля является самой крупной из всех внутренних планет. В то же время она имеет наиболее крупного спутника — Луну, которая по массе составляет 1/81 часть массы Земли. По своему составу азотно-кислородная атмосфера Земли резко отличается от атмосфер других планет и является продуктом жизни. Большая часть атмосферного аргона Земли имеет радиоактивное происхождение от распада К40 в земной коре. Луна представляет собой твердое тело, лишенное атмосферы и состоящее из силикатного материала. Невооруженным глазом уже давно иа поверхности нашего спутника были замечены темные и светлые участки. Большие темные области на поверхности Луны еще первыми исследователями, использовавшими телескоп, были названы морями. Но мы теперь знаем, что на Луне отсутствует вода и так называемые моря представляют собой сухие, относительно плоские равнинные области более темного оттенка, чем остальная поверхность. С помощью телескопа на лунной поверхности можно наблюдать рубцы и ямы горных цепей и кратеров. Особенно много кратеров. Самые большие из них названы в честь выдающихся деятелей науки и культуры — кратеры Тихо, Коперник, Кеплер, Аристарх, Эратосфен, Платон и др. Самый крупный кратер — Гримальди, диаметром свыше 200 км. Кольцеобразные валы кратеров часто имеют высоту порядка 6 км. Поверхность Луны образована темным материалом. Об этом свидетельствует малая отражательная способность лунной поверхности. Луна отражает только 7% падающих на ее поверхность солнечных лучей видимой части спектра. В то же время от поверхности нашего спутника красный свет отражается более эффективно, чем синий или фиолетовый. Это придает лунному свету оранжевые тона. Самые светлые области похожи на белый песок, самые серые — на темные сланцы. По свидетельству американского космонавта Н. Армстронга, побывавшего на Луне, «в общем, исследованный нами район по освещенности может сравниться с пустыней, а его цвет напоминает цвет сухого цемента или песчаного пляжа. При выходе из кабины мы неожиданно обнаружили, что обломки пород и частицы лунного грунта имеют темно-серый или угольно-серый цвет». Изучение орбит искусственных спутников Луны показало, что под поверхностью лунных морей находятся концентрации тяжелого вещества, которые получили название масконов. Одна из самых больших гравитационных аномалий лунного шара — в области моря Дождей. Первые исследования лунных пород позволили выделять среди них четыре типа: пузырчатые со стекловидными пузырьками (тип A), полнокристаллические (тип B), лунные брекчии — сцементированные породы, обломки кристаллического материала (тип C) и россыпи тонкого материала (тип D), составляющего лунный грунт (реголит). Элементарный и минералогический состав этих типов пород очень сходный. Данные о химическом составе лунных пород получены из разных районов: из районов морей (Спокойствия, Океана Бурь и Изобилия); из горных районов с кольцевыми структурами (места посадок «Аполлона-14» и автоматической станции «Луна-20»). Изучение состава лунных пород, собранных преимущественно из районов морей, показывает, что по соотношению основных компонентов он больше всего согласуется с составом полевошпатовых ахондритов — эвкритов. Наиболее вероятным источником вещества Луны могли быть хондриты с повышенным содержанием силикатного железа и не имеющие металлической фазы. По сравнению с земной корой и наиболее близкими к лунным породам базальтами в исследованных породах Луны обнаружено гораздо больше железа, титана, циркония, редких земель и других химических элементов. Элементы с повышенным содержанием в лунных породах обладают некоторыми общими геохимическими свойствами. Отдельные ряды элементов в больших периодах таблицы Д. И. Менделеева образуют так называемые геохимические семейства и находятся по соседству друг с другом. Геохимические семейства объединяют элементы с общими химическими и геохимическими свойствами, определяемыми близким характером внешней электронной оболочки их атомов. Учитывая изложенное выше, можно прийти к выводу, что повышенное содержание ряда химических элементов у поверхности Луны не является случайным, а носит вполне определенный закономерный характер. Так, в поверхностных породах Луны особенно резко выражены элементы семейства железа, молибдена, редких земель. Правда, для редких элементов имеется исключение в отношении одного элемента — европия. Он содержится в скудном количестве по сравнению с другими редкоземельными элементами. Таким образом, элементарный химический состав исследованных лунных пород отражает в первую очередь высокотемпературные условия их образования. Действительно, все до сих пор исследованные лунные породы изверженного вулканического происхождения. Они возникли в результате остывания силикатного расплава, обогащенного железом, — лунные лавы излились из более глубоких горизонтов лунного шара. Лунные породы состоят из немногих минералами. Наиболее распространенные из них следующие: Пироксен Плагиоклаз Ильменит Оливин В лунных породах также обнаружены разновидности кремнезема — кристобалит и тридимит, калиевый полевой шпат, апатит, обогащенный редкими землями, бадделит, биотит, амфибол, кальцит. Встречаются и такие минералы, как пироксенманганит, ферропсевдобрукит и хромотитанистая шпинель. Эти минералы, естественно, отражают повышенное содержание титана, хрома и марганца в материале лунных пород. Все лунные минералы лишены следов воздействия водных растворов, и все лунные породы представляются исключительно сухими; Ничтожные доли окисного железа и преобладание его закисных форм свидетельствуют о недостатке кислорода в процессе формирования лунных пород. Особый интерес представляет измерение изотопного состава химических элементов Лупы. Главные химические элементы показали изотопные соотношения, равные тем же соотношениям на Земле. Это говорит в пользу общего происхождения вещества Земли и Лупы в далеких древних космических системах. Измерение отношений изотопов в отдельных минеральных фракциях лунных пород позволило установить температуры, при которых кристаллизовались эти породы. Крупно- и мелкозернистые лунные породы показали отношение изотопов, которое соответствует изотопному равновесию при 1100—1300° С, что, вероятно, соответствует температуре кристаллизации. Распад радиоактивных изотопов помогает решить вопрос о возрасте лунных пород как времени, прошедшем с момента их кристаллизации. В районе Моря Спокойствия возраст кристаллических пород — 3,7 млрд. лет. Такие древние породы для нашей земной коры являются исключительно редкими. Определение соотношений изотопов стронция и свинца из лунных пород позволило рассчитать возраст Луны как самостоятельно существующей планеты. Он оказался равным 4,6 млрд, лет, хорошо согласуясь с возрастом большинства изученных метеоритов разного типа и состава. Тщательные поиски сложных органических соединений в материале лунных пород привели к открытию в малых количествах простейших соединений углерода. В одном грамме лунной пыли обнаружены также аминокислоты порядка 1×10-8 г. Плотность кристаллических пород Луны 3,1—3,2 г/см3, в то время как средняя плотность Луны 3,35 г/см3. Столь малое различие плотностей свидетельствует о слабой химической дифференциации Луны в целом. Это позволяет заключить, что Лупа есть сферическое тело, сложенное почти целиком силикатным материалом. Марс из всех внутренних планет наиболее удален от Солнца и обладает самой низкой плотностью. Благодаря исследованиям космическими аппаратами «Маринер-4, 6, 7, 8, 9» и «Марс-1, 2, 3» было установлено, что поверхность планеты покрыта многочисленными кратерами, однако обширная область Хеллас совсем лишена кратеров и похожа на поверхность Лупы. Наблюдаются три типа поверхности Марса: светлые — «материковые» районы, желтые — «морские» и белоснежные — полярные шапки. Большая часть поверхности планеты имеет оранжевую окраску, что, по данным оптических характеристик и радиоастрономии, указывает на мелкозернистый характер раздробленных силикатных пород, покрытых пленкой окислов железа. Атмосферное давление у поверхности Марса не превышает 6 мм рт. ст., т. е. на два порядка ниже, чем на Земле. Основным компонентом атмосферы Марса является С02, количество которого, вероятно, превышает 50%, обнаружены примеси NO2, содержание O2 и N пренебрежительно малое. В атмосфере планеты присутствуют пары воды, а также аэрозоли, с которыми связаны «пыльные бури». Температура поверхности Марса изменяется в зависимости от широты и на границе полярных шапок достигает 140—150° К. При таких температурах углекислый газ должен вымерзать. Отсюда можно предположить, что полярные шапки Марса состоят из замороженной углекислоты толщиной слоя в несколько метров. В полярных областях Марса должно вымораживаться значительное количество водяного пара, что способствует образованию ледников. А. Биндер в 1969 г. теоретически исследовал внутреннюю структуру Марса, основываясь на свойствах материала мантии Земли и очень точном определении радиуса и массы Марса по данным измерений космического аппарата «Марииер-4». Теоретическое моделирование показало вероятность того, что Марс имеет внутреннее железное ядро с радиусом 790—950 км, занимающее от 2,7 до 4,9% объема планеты. Состав оболочки — мантии — Марса не должен существенно отличаться от состава земной мантии. Температура внутри Марса должна быть между 800 и 1500° С, т. е. значительно ниже, чем в недрах Земли. В 1948 г. английский астроном Г. Рамзей выдвинул гипотезу о том, что все внутренние планеты имеют одинаковый состав, а различие в их средней плотности определяется разной степенью сжатия вещества под влиянием высоких давлений, пропорциональных массам планет. В частности, существование ядра Земли объяснялось фазовым переходом силикатного вещества в металлическое состояние, вызванное высоким давлением. Однако если бы внутренние планеты имели одинаковый химический состав, а уплотнение в центральных частях определялось бы массой самой планеты, тогда в последовательном ряду планет возрастания их массы — Меркурий, Марс, Венера, Земля — мы бы наблюдали последовательное возрастание плотности. На самом деле, как можно видеть по данным табл. 5, маленький Меркурий имеет более высокую плотность, чем более массивные Марс или Венера. Поэтому можно заключить, что внутренние планеты имеют разный химический состав. При оценке их состава в основном представляют интерес величины средней плотности, вычисленные для нулевого давления в центре планет. Различие состава в данном случае, скорее всего, определяется различным соотношением силикатного (плотность 3,3 г/см3) и металлического железоникелевого материала (плотность 7,23 г/см3). Таким образом, наиболее вероятной причиной различия плотностей внутренних планет солнечной системы является разное соотношение силикатного и металлического (железоникелевого) материала. Развитие этих представлений за последнее время получило большую популярность. В то же время дискуссионным остается вопрос о распределении внутри планет металлической и силикатной частей — находятся ли они вместе и распределяются равномерно по всему объему каждой из планет или же сосуществуют раздельно — металлическая фаза в виде внутреннего ядра, а силикатная в виде оболочки — мантии разной мощности. На основании имеющихся данных в области геохимии и космохимии можно предполагать наличие центральных металлических ядер внутри планет земного типа. Такой вывод больше соответствует всему известному и находит подтверждение со стороны таких метеоритов, как железные, железокаменные и ахондриты. Однако хондриты, которые отражают химически недифференцированный материал, видимо, являются обломками астероидов, в которых не смогла завершиться дифференциация. Из сказанного следует, что разная плотность внутренних планет определяется главным образом различием их химического состава. Более плотные планеты содержат больше металлического железа, менее плотные — меньше. Но, очевидно, различие в составе характерно не только для главных элементов (О, Si, Fe, Mg, Са, Al, Na), но и для всех других химических элементов таблицы Д. И. Менделеева. Во всяком случае данные по распространению многих редких элементов в метеоритах разных классов, полученные за последнее время, вполне подтверждают такое предположение. Обращает на себя внимание пространственная закономерность состава внутренних планет — пропорция металлического железа в ближайших к Солнцу планетах выше, чем в планетах более отдаленных. Это хорошо видно при сравнении близкого к Солнцу Меркурия и далекого от него Марса. По-видимому, в данном случае имеет место важная космохимическая закономерность, которая должна быть объяснима теорией происхождения солнечной системы. - Источник: Химический состав планет (энциклопедия).

Устьянцев Валерий Николаевич:

Опубликовать работу в полном объеме в виде кнги, без заинтересованных в этом лиц, не представляется возможным.
В электронном виде могу отослать на адрес эл. почты. Обобщений по Солнечной системе и выводов нет.
uvn_50@mail.ru

Устьянцев Валерий Николаевич:
Геометрическая правильность, дискретность, периодичность расположения зон систем тектонических нарушений, указывает на симметрию системы Земли. Вдоль глубинных разломов располагаются генетически с ними связанные ослабленные резонансно-тектонические структуры, - вместилища минералного сырья.
Данное обстоятельство, дает возможность широкого применения метода аналогии в геологии. Метод геометризации геопроцесса, - очень надежен и точен, так как действует космогенический фактор, который ответственен за закономерности расположения объектов космоса, а значит и структурных элементов этих объектов (расположение СЭЦ, разломов, месторождений), в системе Земли
- «Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции» (И. Пригожин).
То-есть, процесс формирования минерального сырья, - антиэнтропийный. Открытая система формируется благодаря иерархии тектонических нарушений. Таким образом, зоны систем тектонических нарушений, есть главный фактор под воздействием которого формируются месторождения минерального сырья.
Происхождение нефти:
«… Циркулировали нагретые нефтяные и приповерхностные воды. Ими в осадочных формациях молодых мезозойских и кайнозойских покровов дополнительно переоткладывались и концентрировались газ, нефть, сера, стронций, руды цветных металлов, ряд редких и рассеянных элементов» (В.И. Попов, 1976) [5].
Формирование месторождений углеводородов происходит течении всего геологического времени.
Наиболее древние месторождения, - углеводороды, в связи с тем, что они образованы из легко летучих элементов и углерода. Контролируются месторождения УВ разгломами первичного заложения.
«Среднее содержание углерода в земной коре, по А.Е. Ферсману, равно 0,35% (1939). Оно определено на основании многочисленных анализов горных пород, природных вод и воздуха. Понятно, что подобные подсчеты далеко не точны, и данные разных авторов значительно расходятся. Все же порядок величин, как общего содержания углерода, так и его распределения в разных зонах земной коры, повидимому, верен» (В.И. Вернадский).
Закономерное расположение структурных элементов в пространстве системы Земли.
В силу того, что разломы являются первичными структурами, они располагаются линейно и имеют сквозной характер по отношению к другим тектоническим структурам, что позволяет успешно применять различные способы геометризации для целей прогнозирования.
В работе однозначно доказано обоснованность применения закона И. Пригожина (1947) и принципов нелинейной термодинамики Пригожина, а также принципа симметрии П. Кюри в геологии.
В работе показано:
- рельеф системы Земли, есть отражение тектонических процессов происходящих в ее недрах и не требует никакого доказательства, так-как все процессы и явления происходящие в природе всегда истинны;
- изучение закономерностей расположения структурных элементов рельефа, дает возможность оперативного прогнозирования, даже на начальных стадиях ГРР;
- геоморфологический метод исследования очень точен и не требует больших затрат; 
- линейные структур ы необходимо изучать выбирая ортогональные проекции;
- линейные структуры закономерно ориентированы;
- ориентировка линейных структур планеты, - рифтовых зон океанов и материков, отражает единый план деформации как для материков, так и для океанов с архея до квартера;
- сеть линейных структур планеты, -едина;
- разломы контролируют подвижные пояса планеты и имеют сквозной характер;
- линеаменты контролируют материки и континенты и пересекаюся под углом 900 и 450 ;
- гидрографическая сеть маркирует разломы;
- линеаменты опоясывают планету (четыре направления), носят сквозной характер, контролируют геологические процессы происходящие в тектоносфере и ядре;
- процессы деструкции земной коры, произошли в следствии возникновения избыточного давления флюида со стороны мантии;
- «Не надо забывать, что вода, выделяемая при плавлении и нагревании горных пород и часть воды магмы происходят благодаря распадению соединений — алюмосиликатов и силикатов, тех же резорбируемых пород» (В.И. Вернадский, 1934). .
- деструкции земной коры способствовали эпейрогенические колебание литосферы;
- под воздействием эпейрогенических колебаний литосферы, ослабленные деструкцией блоки земной коры дифференциироанно  испытали погружение (по радиали), что привело к образованию океанов и морей;
- впадины океанов существуют с архея, о чем свидетельствуют мощности земной коры области впадин;
- месторождения УВ, связаны с первичными разломами;
- линеаменты, корни гор, континентов, глобальные гравитационные и магнитные аномалии, - свидетельствуют о активных коро-мантийных обменных процессах происходящих в системе Земли;
- вышеизложенное опровергает гипотезы дрейфа континентов и литосферных плит;
- автоколебательная система Земли имеет блоковое строение.
ии водорода.
Можно считать доказанным следующее (графо-статистический анализ первичных структур):
В начале 20-го века В. Гоббс указывал на многочисленные примеры «геометрической структурированности» рельефа земной поверхности, в котором преобладают прямолинейные направления. В 30-х годах 20-го века Р. Зондер высказал предположение о наличие в Земной коре сети первичных разломов, проявляющихся в виде «линеаментов» - прямолинейных структур и форм рельефа.
Первичные структуры пересекаются под углом 90 и 45 градуса.

«Основной чертой строения земной коры является то, что это единственная область планеты, где существуют и могут проявляться, всем нам известные — и определяющие жизнь и окружающую ее среду — физические состояния материи:
- твердое, жидкое и газообразное.
Это единственная область планеты, где они все могут существовать. Этот признак правильно принять за исходный, для выделения области геосфер, так как возможно, что нет того совпадения области земной коры с границей изостатической поверхности, которая часто берется как нижняя граница земной коры.
Уже на 60 км вниз от уровня геоида под сушей давление достигает примерно 30 тыс. ат/см2 , при котором исчезает различие между твердым (кристаллическим), жидким и газообразным состояниями» (В.И. Вернадский, 1934). .
С.П. Максимов, 1977, показал связь тектонических циклов и процессом накопления нефти и газа - тектоническая цикличность оказывает влияние на миграцию УВ. Тектоническая обстановка является фактором контролирующим пути направления и скорость миграции УВ.
В.Е. Хаину, «одной из важнейших особенностей протекания разномасштабных геопроцессов, являются их цикличность, происходившая на фоне их направленного развития»
Цикличность формирования месторождений гранитных пегматитов в геологической истории Земли, удалось выявить Ткачеву А.В.:«Было установлено, что «абсолютные максимумы интенсивности попадают в следующие интервалы (млрд лет): 2,65-2,60; 1,90-1,85; 1,00-0,95; 0,55-0,50 и 0,30-0,25. Если исключить интервал 0,55-0,05, то остальные находятся на расстоянии 0,8+_0,1 млрд лет, то есть формируют квазирегулярную цикличность. С другой стороны, выпавший из этой последовательности пик 0,55-0,50 вместе с более слабыми пиками второго порядка образуют еще один ряд: 1,2-1,15; 2,1-2,05 и 2,85-2,8. совпадают с завершающими фазами импульсов самого интенсивного роста ювенильной континентальной коры в истории Земли. Процесс происходил волнообразно».
Временной разрыв между процессом структурированием тектоносферы волной энергии и гидротермальным массопотоком, становлением гранитоидных массивов, составляет около 50 млн. лет. Данный процесс, характеризуется как направленно-циклический (волнообразный).
«Выделяются горообразовательные геохимические эпохи формирования и локализации минерального сырья и разделяющие их равнинообразовательные» (В.И. Попов) [7].
Корреляция процессов рудообразования с проявлением эпох пенепленизаций, отражает наличие единого волнового механизма структурообразования и рудообразования; единство глобального и регионального, а также и циклический характер их проявления в истории системы Земли. Процесс миграции вещества, происходит как в сторону ядра, так и наоборот, то-есть он имеет разнонаправленный характер. Данное положение является основополагающим в понимании процесса рудообразования и генезиса минералогических ассоциаций.
Вещество мигрируя из одной формации в другую, подвергается преобразованию на атомарном уровне, приобретая новые качества и свойства. Физико-химические деформации генетически связаны с взаимодействующими полями напряжений, возникновение которых связано с энергетикой питающих систем более высокой организации.
Вдоль глубинных разломов, располагаются генетически с ними резонансно-тектонические структуры, - вместилиша минерального сырья.
Элементный состав нефти: С 82,5-87%; Н 11,5-14,5%; О 0,05-0,35, редко до 0,7%; S 0,001-5,5%, редко свыше 8%; N 0,02-1,8%. Около 1/3 всей добываемой в мире нефти содержит свыше 1% S.
Средняя величина Corg в стратиграфическом разрезе (нефть+газ) мира:  Corg=5%, проанализированы n=50 свит от палеопротерозоя до квартера.
Т.о.: 87 — 5 = 82% С, -  абиогенного углерода
Углеводороды комплементарны друг другу.
При метаморфизме увеличивается доля С и падает доля Н и гетероэлементов.

1934 год: содержание углерода в углеводородах С = 83-87%;
- водорода Н = 11-14%.
Насыщение нефти кислородом атмосферы: содержание кислорода до 6%.
2021 год: э
- лементный состав нефти: С 82,5-87%; Н 11,5-14,5%;
Насыщение нефти кислородом атмосферы:
О 0,05-0,35.
Цифровые данные указывают на глубинное происхождение УВ.
Элементный состав нефти: С 82,5-87%; Н 11,5-14,5%; О 0,05-0,35, редко до 0,7%; S 0,001-5,5%, редко свыше 8%; N 0,02-1,8%. Около 1/3 всей добываемой в мире нефти содержит свыше 1% S.
Средняя величина Corg в стратиграфическом разрезе мира: Corg=5%, проанализированы n=50 свит от палеопротерозоя до квартера..
Таким образом, в нефти заключено 77.5-82.5% углерода абиогенного происхождения (не связанного генетически с биосферой).
Среднее значение: HI = 361.5.
Среднее значение:(S1+S2) = 1.39.
K = (S1 + S2)/НI) * 100% = 0.4%.
То-есть, величина (99.6%) указывает на то, что огромные массы минерального сырья, были сформированы за счет индекса HI, глубоких сфер земной коры системы Земли. Формирование месторождений с большими запасами углеводородов, происходит благодаря углероду не связанному в своем происхождении с биосферой (ювенильному) и высокому генерационному водородному потенциалу HI».

Corg в палеопротерозое 29%, в квартере 0.6%. Количество урана в нефти плавно снижается от палеопротерозоя до квартера.
При формировании коры материков в процесс дифференциации вовлечена мантия: расчеты, сделанные А. Б. Роновым и Д.А. Ярошевским показывают, что для литосферных элементов, в дифференциацию должны быть вовлечены вещества с глубины: для кремния  60 км; алюминия - 140 км; кальция - 50 км; натрия - 180 км; для калия - 1300 км. [В.В. Белоусов, 1975] [5].
«... при подъеме газа вверх, давление падает. Достаточно уменьшить давление в 10 раз - от 50 до 5 килобар, чтобы активность кислорода возросла в миллион раз...» (А. Портнов, 1999).
- Р.Б. Баратов (1973) установил, что «архейские отложения юго-западного Памира и Каратегина сначала подверглись метаморфизму гранулитовой фации при Т=750О С и Р = 7 кбар в Каратегине и до Т=800о С и Р = 7,5 кбар и выше, в юго-западном Памире, в дальнейшем повсеместно высокотемпературному диафторезу и ультраметаморфизму в условиях амфиболитовой фации. Повышенное давление привело к эклогитизации пород. Таким образом, породы кристаллического основания образовались в термодинамических условиях при Т=600-750о и Р = 6-7 кбар, что соответствует глубинам их формирования от 5 до 10 км» [5].
«Новейшая неоген-четвертичная постплатформенная горообразовательная стадия. В Южном Тянь Шане — проявление высокой сейсмической активности, на севере — формируются сводовые рифтовые поднятия и расчленяющие их разломы и грабены, которые отнесены к Трансазиатскому поясу Наливкина. Эпоха сопровождалась подъемом нагретых вод с растворенными в них ряда металлов и летучих соединений ртути, сурьмы. Циркулировали также нагретые нефтяные и приповерхностные воды. Ими в осадочных формациях молодых мезозойских и кайнозойских покровов дополнительно переоткладывались и концентрировались газ, нефть, сера, стронций, руды цветных металлов, ряд редких и рассеянных элементов» (В.И. Попов, 1976)
С факторами (сила тяжести, центробежная сила вращения, волна энергии), связан процесс вытеснения легкоплавких, легколетучих элементов и их ассоциаций из глубоких сфер системы Земли. Наличие коровых волноводов, которые перекрываются более плотными экранирующими породами, образуют систему, в которой происходит формирование глобального резервуара газонасыщенных пород.
Дифференциация (разложение, разделение) вещества под воздействием волны энергии, способствует синтезу газа, газоконденсата, нефти.

Отмечен феномен природных ядерных реакторов (возраст 1,968 ± 0,050 млрд лет), определивших дополнительное преобразование нефтегазоматеринских пород серии Franceville в результате ионизирующего излучения урана и продуктов его распада. (спрвка: Природный уран содержит около 0,71 % U-235, 99,28 % U-238 и примерно 0,0054 % U-234).
«Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены.
Углерод обладает удивительной способностью присоединять атомы различных элементов — он образует до трех миллионов всевозможных соединений.
Системные свойства углерода, способствуют формированию минералогических ассоциаций в структурируемой волнами энергии тектоносфере автоколебательной системы Земли.
      235U – является первичным ядерным горючим; 233U, 239Pu – вторичным ядерным горючим.
«Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены. Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространённого на Земле водорода.
Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза.
Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза.
Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах» .
На данный момент известны 7 обычных изотопов водорода, а также один экзотический атом водород-4.1 (мюоний, 4He-μ).
D + D --- 4 He + гамма-излучение.
Дейтерий обладает лучшими свойствами замедления нейтронов.
«Реакции синтеза между ядрами лёгких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.
Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у урана-238. Альфа-радиоактивные ядра - теллур и массового числа около 106—110, а при атомном номере больше 82 и массовом числе больше 200 практически все нуклиды альфа-радиоактивны, хотя альфа-распад у них может быть и не доминирующей модой распада.
Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.
 К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание кластеров – лёгких ядер от углерода 12С до серы 32S. Во всех видах радиоактивности, кроме γ‑распада, изменяется состав ядра – число протонов Z , массовое число А или и то и другое.
На Земле гелий образуется в результате альфа-распада тяжёлых и легких элементов альфа-частицы, излучаемые при альфа-распаде, — это ядра гелия-4. Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается метаном, концентрация гелия в котором может достигать 7 % от объёма и выше.
С-хондриты содержат много железа, которое почти всё находится в соединениях силикатов. Благодаря магнетиту (Fe3O4), графиту саже и некоторым органическим соединениям углистые хондриты приобретают тёмную окраску. также содержат значительное количеств гидросиликатов (серпентин, хлорит, монтморилонит). Гидросиликаты в составе хондритов существенно влияют на их плотность.

УВ древнейший минерал планеты. Запасы УВ, - неистощимы. Источник их образования — диффренцаця ходрита, - алюмосиликата, - кремнеалюмосиликата, -----нефть, газокондесат, газ, гелий, водород.
Опираясь на выше изложенное: водород и гелий,углистые хондриты - создают неоднородности космоса…
УВ образуются под воздействием энергии, которая возникает в результате ядерных реакций происходящих в системе Земли.
УВ - древнейшие минералы планеты.
УВ образуются и подвергаются преобразованию на протяжении всего "жизненного" цикла системы Земли, в связи с тем, что они есть по факту, производные гелия, водорода и углистых хондритов.
Необходимо отметить, что динамические процессы, связанные со структурно-вещественным преобразованием системы Земли, ярко выражены на других планетах солнечной системы (см. выше).
УВ могут в том или ином количестве образуются из всех видов пород, под вод воздействием волны энергии исходящей от экзоэнергетических элементов.
Конечные продукты дифференциации вещества хондритов, под воздействием волны энергии, -  нефть, метан, водород, гелий.
Планеты-гиганты и планеты земной группы своим плотностным характеристикам резко различны, - это есть яркое проявление процесса дифференциации вещества.

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Перейти к полной версии