Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
К числу наиболее информативных индикаторов эндогенного рудообразования по праву относится ртуть, образующая литохимические, водные и атомохимические ореолы в почвенном и атмосферном воздухе. Помимо поисков рудных месторождений изучение ореолов рассеяния ртути эффективно при исследовании геотермальных областей и зон современной вулканической и тектонической активности, при оценке потенциальной нефтегазоносности перспективных структур.
Благодаря специфическим физико-химическим свойствам, ртуть является единственным металлом, образующим газовые ореолы в приземной атмосфере с концентрациями, поддающимися на сегодняшний день регистрации инструментальными оптическими методами.
Систематические исследования, позволили установить широкое развитие газовых ореолов ртути в приземной атмосфере ртутных, золоторудных, редкометальных и др. рудных
месторождений.
Впервые установлен факт существования газовых ореолов ртути над морской поверхностью в пределах региональных тектонических нарушений (Берингово море)». (Н.Р. Машьянов, 1985).
Данными многоволнового глубинного профилирования МГСП установлена устойчивая корреляция местоположений глубинных сейсмических аномалий (мантийных и коровых) и зон размещения крупных и гигантских месторождений нефти и газа [И.К. Букин, А.Д. Щеглов и др, 1999].
Устьянцев Валерий Николаевич:
Происхождение планет-гигантов
Все небесные тела Солнечной системы во время галактических зим увеличивают свои размеры и массу, т.е. растут. Во-вторых, небесные тела во время галактических зим приближаются к центральному телу так, что с каждой галактической зимой находятся к Солнцу все ближе, а спутники, кроме того, приближаются к своим планетам.
При этом увеличение разных небесных тел происходит неодинаковыми темпами. Быстрее всего растут планеты-гиганты и Солнце, а медленнее всего - планеты земной группы и другие силикатные тела. Приближение же небесных тел к их центральным телам происходит под воздействием, во-первых, торможения небесных тел в газово-пылевой среде диффузной материи, а, во-вторых, под воздействием увеличения силы гравитационного притяжения небесных тел к центральному телу, поскольку их массы увеличиваются, а расстояние между ними уменьшается.
Вследствие этого небесные тела, имеющие одинаковое происхождение, должны подчиняться некоторым общим для них закономерностям. Например, масса планет-гигантов должна быть тем больше, чем ближе к Солнцу они расположены, и, в общем-то, они и подчиняются этой закономерности, хотя здесь, как это бывает часто, имеется и исключение - масса Нептуна несколько больше массы Урана.
Но у других планет-гигантов эта закономерность достаточно четко выражена: масса Юпитера больше массы Сатурна в 3,35 раз, а масса Сатурна больше массы Урана в 6,5 раза. Если эта закономерность верна, то за орбитой Нептуна (и Плутона) должны быть еще крупные планеты с массами в несколько масс Земли, затем в 1 массу Земли и т. д. Однако следует иметь ввиду, что увеличение масс небесных тел является далеко не односторонним, прямолинейным. Оно сопровождается в то же время и периодическими уменьшениям и масс то одних, то других небесных тел. И происходит это по разным причинам: из-за быстрого осевого вращения под влиянием центробежной силы, из-за малых масс многих небесных тел, не способных удержать атмосферу, особенно водород и гелий, из-за нагрева солнечной энергией, из-за нагрева приливным трением.
Вполне возможно, Юпитер уменьшился в массе и уменьшается и в настоящее время посредством мощного вихря в зоне большого красного пятна вследствие близости Юпитера к Солнцу и его относительно быстрого осевого вращения. Кроме того, возможно, Тритон был раньше пятой большой планетой, но затем, приблизившись к Нептуну на опасное расстояние, он потерял почти все свое вещество при нагревании под воздействием механизма приливного трения, а затем и вовсе перешел на его орбиту.
Можно также предположить, что Плутон и Харон раньше, будучи независимыми планетами, до того как Плутон захватил Харона на свою орбиту, были большими планетами, имея по несколько масс Земли, но затем, взаимно истребляя друг друга, когда Харон догнал Плутона, они растеряли большую часть своего вещества, оставив себе лишь несколько процентов. Если это так, то раньше было семь из известных больших планет: пятой был Тритон, шестой - Плутон и седьмой - Харон.
С другой стороны, если в прошлом планеты-гиганты были дальше от Солнца и меньше в размерах и массе, то необходимо согласится и с тем, что взамен гибнущих в недрах Солнца или вблизи его планет-гигантов должны появляться все новые и новые планеты-гиганты. И эти новые планеты-гиганты не появляются в готовом виде откуда-то извне, а порождаются в Солнечной системе постоянно. Вернее, они не рождаются, а вырастают из ледяных планет, расположенных на периферии Солнечной системы, одной из которых является небольшая планета Плутон, за которой, несомненно, расположен целый ряд ледяных планет, больших, с массой, соизмеримой с массами Земли и Марса, и, затем, малых, с массой, соизмеримой с массой Плутона и его спутника Харона.
Именно от ледяных планет и происходят планеты-гиганты.
Устьянцев Валерий Николаевич:
Планеты-гиганты
Группу планет-гигантов составляют четыре планеты Солнечной системы – Нептун, Сатурн, Уран и Юпитер. Поскольку эти огромные планеты гораздо дальше удалены от Солнца, чем меньшие по размерам планеты, у них есть и другое название - внешние планеты.
Можно распределить интересные факты о планетах-гигантах по нескольким категориям. В первой учитываются их строение и вращение. Вторая посвящена явлениям, наблюдаемым в их атмосферах. В третьей отмечается наличие у планет колец. Четвертая описывает наличие у них спутников.
Структура планет-гигантов и их вращение
В основном планеты-гиганты образованы из сложной смеси газов – аммиака, водорода, метана и гелия. Как считают ученые, эти планеты имеют каменные или металлические ядра небольших размеров.
Из-за громадной массы объекта давление в недрах газовой планеты достигает миллионов атмосфер. Ее сжатие силой гравитации высвобождает значительную энергию. В результате этого фактора планетами-гигантами тепла выделяется больше, чем поглощается из солнечного излучения.
Имея размеры, значительно больше земных, суточный оборот такие газовые планеты совершают за 9-17 часов. что касается средней плотности планет-гигантов, то она близка к 1,4 г/куб. см. – примерно равна солнечной.
У Юпитера, крупнейшей планеты Солнечной системы, масса превышает общую массу всех прочих планет. Вероятно, именно за это его назвали в честь главного бога римского Пантеона. Ученые полагают, что именно быстрым вращением Юпитера объясняется расположение облаков в его атмосфере - мы их наблюдаем в виде протяженных полос.
Атмосферные явления
К числу интересных фактов о планетах-гигантах относится и наличие мощных атмосферных оболочек, где проходят неординарные по земным понятиям процессы.
В атмосферах таких планет нередки сильные ветры, имеющие скорость свыше тысячи километров в час.
Там же наблюдаются долгоживущие ураганные вихри, к примеру, на Юпитере - трехсотлетнее Большое красное пятно. На Нептуне существовало на протяжении подолжительного периода Большое темное пятно, а на Сатурне отмечаются пятна антициклонов.
Кольца и спутники планет-гигантов
Малозаметность «оправы» Юпитера объясняется ее узостью и небольшими размерами частиц пыли в ее составе.
Кольцо Сатурна самое внушительное по размеру – его диметр равен 400 тысячам километров, а вот ширина кольца насчитывает только несколько десятков метров. Состоит кольцо из вращающихся вокруг планеты кусков льда и небольших камней. Эти части разделены несколькими щелями, что формирует несколько разных колец, опоясывающих планету.
Кольцевая система у Урана - вторая по величине, и его «оправа» имеет красный, серый и синий цвета. В ее составе кусочки водяного льда и очень темные обломки размером не более метра в диаметре.
В кольце Нептуна пять подколец, состоящих, предположительно, из частичек льда.
Спутниковая система Юпитера включает в себя почти 70 объектов. Один из них – Ганимед, считается крупнейшим спутником в составе Солнечной системы.
Исследователи обнаружили у Сатурна более 60 спутников, Нептун обладает 27 спутниками, Нептун – 14, включая Тритон. Последний примечателен своей ретроградной орбитой - единственной из всех крупных спутников Солнечной системы.
Этот спутник, а также два других спутника газовых планет – Титан и Ио, имеют атмосферы.
Устьянцев Валерий Николаевич:
Внешние планеты
По составу, строению и размерам внешние планеты солнечной системы резко отличаются от внутренних планет земной группы. Внешние планеты имеют малую плотность, что определяется их газовым составом. Причем ведущим элементом этих планет являются водород и его соединения. По некоторым оценкам Юпитер содержит 78% водорода по весу, а Сатурн 63%. Уран и Нептун имеют более высокие средние плотности, и, вероятно, пропорция водорода в них ниже. В спектрах протяженных атмосфер внешних планет отмечаются сильные полосы метана, а также полосы молекулярного водорода. Кроме того, в спектрах Юпитера и Сатурна наблюдаются слабые полосы аммиака. Однако на Уране и Нептуне аммиак находится в замороженном состоянии, поскольку температура поверхности этих планет очень низкая, порядка -210° С. При таких температурах большинство газов переходит в жидкое и твердое состояния. По некоторым косвенным данным, можно допустить, что в составе внешних планет имеется много гелия. Таким образом, крупные внешние планеты солнечной системы по своему атомарному элементарному составу во многом близки к составу Солнца. Они сложены преимущественно из легких компонентов — H, Не, СН4, NH3, H2O. Сохранность этих веществ в составе больших планет связана с высокими значениями масс самих планет, а также с низкими температурами внешних краевых областей солнечной туманности, от которой они произошли. Изложенные выше данные позволяют прийти к определенным выводам, имеющим прямое отношение к вопросам происхождения солнечной системы. Планеты солнечной системы различаются по своему химическому составу. Внутренние планеты сложены в основном твердыми телами, внешние — преимущественно газами. Среди внутренних планет также имеется различие в составе — ближайшие к Солнцу планеты более плотные, чем отдаленные. Различие в составе внутренних планет, по-видимому, обусловлено теми же причинами, что и различие в составе метеоритов, т. е. планеты более плотные содержат больше металлической (железоникелевой) фазы и меньше силикатной. Максимальное содержание железа, вероятно, характерно для Меркурия, минимальное для Луны, в которой большая часть железа находится в силикатах. Различие состава планет свидетельствует о химическом и физическом фракционировании элементов в процессе образования солнечной системы. Фракционирование определялось различной степенью окисления вещества в зависимости от расстояния от Солнца. Гигантские внешние планеты солнечной системы возникли из вещества, чрезвычайно близкого к составу Солнца, и процессы фракционирования при их образовании проявились в незначительной степени. - Источник: Химический состав планет (энцклопедия).
Устьянцев Валерий Николаевич:
Но почему, собственно, распространенность того или иного элемента именно такая, а не какая-либо другая и обязательно уменьшается с увеличением порядковых номеров элементов в периодической системе? Почему лишь восемь элементов составляют почти всю массу земной коры? И почему, наконец, для элементов, не принадлежащих к "восьмерке", разброс кларков столь велик?
Эти вопросы не получили бы ответа, если бы представления о распространенности элементов оставались, образно говоря, приземленными, если бы мысль исследователя ограничилась лишь изучением состава Земли. "Значение кларков вышло за пределы частной геохимической задачи - оно играет огромную роль в понимании геохимии Космоса", - писал А.Е. Ферсман.
Наша планета не более чем песчинка в бесконечном космическом пространстве. Прикоснуться к тайнам Вселенной удалось не сразу. Долгое время ученые только наблюдали небесные светила в телескопы. О том, чтобы узнать, из какой материи они состоят, не могло быть и речи. Но постепенно исследования "заоблачных далей" позволили нарисовать отчетливую картину распространенности элементов в космосе.
Мы никогда не узнаем, из чего состоят далёкие небесные тела, звёзды и Солнце», — утверждал в середине XIX в. видный французский философ Огюст Конт. Он выражал широко распространённое мнение.
Но прошло совсем немного времени, и выяснилось, что «познать непознаваемое» в действительности не так уж сложно. В 1859 г. двое немецких учёных — химик Роберт Бунзен и физик Густав Нирхгоф — изобрели простой и чрезвычайно чувствительный метод анализа. Он позволил изучать состав небесных светил с такой же степенью достоверности, с какой в земных лабораториях определялся состав минералов и руд руд.
Исследователи уже давно знали: различные вещества, помещённые в пламя горелки, окрашивают его в разные цвета. Например, поваренная соль окрашивала пламя в жёлтый цвет, медный купорос — в зелёный. Однако однозначно определить состав вещества по цвету пламени всё же оказывалось невозможно. Часто бывало так, что вещества разного состава окрашивали пламя одинаково.
Бунзен и Кирхгоф нашли выход из положения.
Они предложили пропускать свет пламени через стеклянную призму. Призма разделяла цветные лучи на монохроматические (т.е. одноцветные). Например, литий и стронций окрашивают пламя в один и тот же малиново-красный цвет. Призма же позволяет обнаружить неоднородность литиевого и стронциевого пламени. В первом случае наблюдаются две линии — ярко-малиновая и рядом с ней бледно-оранжевая; во втором — голубая, две красные и оранжевая линии.
Так выяснилось, что светящиеся пары любого химического элемента испускают лишь одному ему свойственный спектр — определённый набор монохроматических излучений, каждому из которых отвечает своя линия.
Прибор, сконструированный Бунзеном и Кирхгофом, получил название спектроскопа, а разработанный ими метод — спектрального анализа.
Спектроскоп в сочетании с телескопом позволил анализировать излучение Солнца и звёзд и устанавливать их состав. Оказалось, что там присутствуют те же элементы, которые существуют на Земле.
Так начиналась наука космохимия. Нашлось дело для спектроскопа и на Земле. С помощью спектрального анализа определяют химический состав минералов и горных пород, поскольку этот метод оказался достаточно простым в применении.
Как окаалось, "небесная" последовательность кларков заметно отличается от земной. Лидерами являются первые два элемента периодической системы - водород и гелий. По существу, Вселенная на 75% состоит из водорода и на 24% - из гелия. Но есть и безусловное сходство: кислород и другие члены "восьмерки" принадлежат к числу элементов, широко распространенных в космосе. Выдерживается и другая земная традиция: чем выше порядковый номер элемента, тем меньше его содержание.
Одна из величайших проблем мироздания - происхождение химических элементов. Собственно химия здесь уже ни при чем - это сфера, подвластная ядерной физике. Но не только ей: нужно принимать во внимание представления об эволюции Вселенной, и прежде всего звезд. Именно звезды и есть те гигантские "фабрики", где протекал и протекает грандиозный процесс образования различных химических элементов в результате ядерных реакций. Современные теории рассматривают несколько стадий формирования элементов. Первая из них - термоядерная реакция, в ходе которой водород превращается в гелий. Затем наступает стадия слияния ядер гелия в ядра более тяжелых элементов, в том числе кислорода, магния, кальция, алюминия, кремния, железа... Словом, знакомая нам "восьмерка" повляется именно на данной стадии "звездного синтеза".
Наряду с этой ученые рассматривают и другую гипотезу: согласно ей, элементы со средними значениями порядковых номеров возникают в результате деления очень тяжелых ядер с большими зарядами. При космических "катастрофах", например, взрывах сверхновых звезд, обретают жизнь такие элементы, которые, видимо, никогда не удастся синтезировать в лаборатории. Они чрезвысайно неустойчивы и быстро распадаются на несколько гораздо более легких "осколков".
По одной из распространенных версий, Солнечная система, сформировались из облака космической материи, которую выбросил в пространство взрыв сверхновой звезды. Миновал долгий сток, прежде чем земной шар, пройдя различные стадии формирования, достиг современного состояния.
Многое изменилось за то время. Так, исчезли все трансурановые элементы (т.е. следующие за ураном в таблице Менделеева). Безвозвратно улетучилось большое количество водорода, гелия и других благородных газов. Наконец, заработала "доменная печь", начавшая сортировать различные элементы. Но как бы то ни было, химический состав Земли оказывается своеобразным "слепком", "отпечатком" тех невообразимо далеких событий, которые происходили во Вселенной (энциклопедия).
Навигация
Перейти к полной версии