Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
Астрономы из Франции, Испании и Германии обнаружили в межзвёздном пространстве нашей галактики пропинилидин (C3H+). Этот углеводород является "братом" природного газа и нефтепродуктов, встречающихся на Земле. Как оказалось, значительные его запасы хранит Конская Голова – туманность в созвездии Ориона.
Исследователи изучали спектры излучения туманности при помощи телескопа Института радиоастрономии (IRAM) в миллиметровом диапазоне длин волн и обнаружили характерные линии молекул, содержащих радикал C3H+. Астрономы также выявили в Конской Голове 30 других молекул.
Учёных удивило, что туманность, которая давно известна как большая межзвёздная лаборатория, порождающая всё новые химические вещества, обладает значительными запасами углеводородов. "В туманности содержится в 200 раз больше углеводородов, чем воды на Земле!" — рассказывает один из авторов работы Вивиана Гусман (Viviana Guzman).
Отметим, что пропинилидин находили и ранее, но не в нашей галактике. Принадлежность его к семье углеводородов, являющихся основным источником энергии на нашей планете, делает Конскую Голову активным космическим "нефтеперерабатывающим заводом".
Туманность находится в 1300 световых годах от нас в созвездии Ориона и получила своё название за характерные очертания.
В дальнейшем учёные хотели бы разобраться в процессах производства пропинилидина в недрах этого необычного на вид космического образования. Подробности об уже проделанной работе можно узнать в статье в журнале Astronomy & Astrophysics.
Устьянцев Валерий Николаевич:
Астрономы впервые обнаружили хиральную молекулу органического соединения в межзвездном пространстве
Астрономы из Калифорнийского технологического института впервые обнаружили хиральную молекулу органического вещества в межзвездном пространстве. Это открытие может иметь важное значение для понимания зарождения жизни на Земле (возможно, и других планетах в иных звездных системах). Дело в том, что аминокислоты и другие органические соединения существуют в двух формах, называемых оптическими изомерами. Эти изомеры одинаковы по составу, но их структура зеркально противоположна. Отличить один изомер от другого можно в растворе, пропустив через него свет. Обе хиральные (зеркальные по структуре) формы будут вращать плоскость поляризации излучения, проходящего через раствор, влево или вправо. Важным моментом является то, что все аминокислоты, из которых состоят белки живых организмов (включая как вирусы, так и человека) являются L-изомерами, это «левосторонние» молекулы.
L-изомеры уже обнаружены в космосе, специалисты нашли относительно простые органические соединения на поверхности комет (в частности, на комете Чурюмова-Герасименко). Находка, сделанная сейчас — это окись пропилена. На Земле это вещество хорошо известно, его используют в производстве некоторых видов пластика и как фумигант в процессе выращивания миндаля. Пропилен используется и как топливная присадка. Ученые считают, что обнаруженное соединение может находиться в больших количествах в облаках газа, окружающих центр нашей галактики. Хиральная молекула, обнаруженная учеными, находится на расстоянии 390 световых лет от Земли. Речь идет о большой газопылевом облаке Стрелец В2. Здесь активно идет процесс звездообразования, ранее в облаке астрономы обнаружили несколько молодых звезд.
Открытие было сделано при помощи высокочувствительного 100-метрового радиотелескопа Green Bank. Зеркало имеет размеры по осям 100×110 м. Этот радиотелескоп может быть направлен в любую точку на небе с точностью, превосходящей одну тысячную градуса. Минимальная рабочая длина волны — 6 мм.
В зеркальных изомерах интересно то, что свойства соединений, одинаковых по составу, но различных по зеркальности/хиральности, также могут быть разными по отношению к другим хиральным объектам, какими являются биологические системы. В фармацевтике этот феномен хорошо известен. У кетамина, к примеру, есть зеркальный изомер, который называется эскетамин. Этот «близнец» кетамина является более сильным фармацевстическим препаратом, чем сам кетамин. Меторфан, его R-изомер, является компонентом сиропа от кашля. L-изомер — это уже мощный опиоид, использующийся в качестве обезболивающего препарата. Напроксен, в одной своей инкарнации — это обезболивающий препарат. В другой — это яд, в буквальном смысле слова разрушающий печень. Все это позволяет говорить о том, что L-изомерия аминокислот, составляющих белки, формирующие наши тела, вовсе не случайность. При этом только аминокислоты одинаковой ориентации (либо все левосторонние, либо все правосторонние) могут образовывать устойчивые белки.
Пока что мы не знаем, почему жизнь состоит из «левосторонних» аминокислот, но с самим этим фактом никто не спорит. Правосторонние изомеры «аминокислот жизни» довольно редки на Земле, и не принимают участия в биохимических реакциях.
Сложные органические соединения постоянно формируются в межзвездном пространстве, в основном, в пылегазовых облаках. Считается, что более простые соединения могут сталкиваться друг с другом, образуя все более сложные органические вещества. С усложнением молекулы соединения необходимы уже новые условия для формирования еще более сложных органических соединений. В некоторых случаях помочь могут небольшие фрагменты водяного льда, на котором осаждаются отдельные молекулы. С течением времени их становится больше, и они начинают взаимодействовать друг с другом, формируя уже более сложные структуры. Сложная органика обнаружена на некоторых кометах, включая комету Чурюмова-Герасименко. Здесь найдены углеводы, спирты, сероводород, синильная кислота, глицин и фосфорсодержащие соединения. По мнению специалистов, эти вещества теоретически могут формировать еще более сложные соединения, включая аминокислоты.
Согласно одной из теорий, жизнь на Земле зародилась благодаря падению богатых органикой комет на поверхность нашей планеты в далеком прошлом. Органические вещества взаимодействовали друг с другом, постепенно формируя «кирпичики жизни». Но первый этап такого синтеза проходил как раз на кометах. Теперь, вероятно, можно говорить о том, что аналогичный синтез проходит в межзвездном пространстве.
В самом факте обнаружения хиральной молекулы органического вещества в межзвездном пространстве нет ничего сенсационного. Никто не сомневался, что такие изомеры существуют. Находка ученых просто подтвердила теорию. К сожалению, вид хиральности обнаруженного соединения пока не установлен. Дело в том, что видов хиральности несколько. Это центральная (центр хиральности), аксиальная (ось хиральности), планарная (плоскость хиральности), спиральная (спираль) и топологическая хиральность. Специалисты надеются на то, что выяснить вид хиральности окиси пропилена из межзвездных облаков удастся при изучении взаимодействия с молекулами этого соединения поляризованного света.
Устьянцев Валерий Николаевич:
Кто уничтожил магнитное поле, а заодно и жизнь на Марсе
Версия для печати
Обсудить на форуме
На Марсе нет глобального магнитного поля, нет северного и южного полюсов
Александр Портнов
Об авторе: Александр Михайлович Портнов – доктор геолого-минералогических наук, профессор.
космос, марс, астрономия Американцы все роют и роют на Красной планете. Пока – с помощью роботов. Фото NASA
На Марсе нет глобального магнитного поля, нет северного и южного полюсов. Поэтому компас здесь бесполезен. В разных районах планеты магнитная стрелка крутится, как собачонка, потерявшая хозяина. Почему у Марса нет единого магнитного поля? Ведь, по мнению специалистов, когда-то оно было.
По данным американского орбитального зонда Mars Global Surveyor, вместо единого поля сейчас существует множество локальных, иногда довольно сильных магнитных аномалий. На карте магнитного поля они дают пеструю пятнисто-мозаичную картину. Островки магнитного поля имеют интенсивность 0,2–0,3 гаусса, то есть они соизмеримы по величине с магнитным полем Земли.
Магнитные аномалии особенно сильно проявлены в южном полушарии, в районе гигантского метеоритного кратера Эллада диаметром 600 км. Они сильно вытянуты в широтном направлении и представляют собой как бы полуцилиндры длиной до 1000 км с разными знаками. Аномалии частично экранируют поверхность планеты от «солнечного ветра» и космических излучений.
Гипотезу, объясняющую потерю магнитного поля, предложил недавно Джафар Аркани-Хамед из университета Торонто. Вместе с коллегами из канадских университетов Летбриджа и Йорка он провел моделирование системы, предполагающей захват Марсом крупного тела, вероятно из пояса астероидов. Предполагается, что это событие произошло 4 млрд. лет назад. Астероид стал спутником Марса и, создав конвекционные, или приливные, потоки в жидком ядре планеты, «включил» тем самым магнитное поле Марса.
Расчеты показали, что при совместном воздействии Солнца и Юпитера астероид мог выйти на орбиту вокруг Марса с радиусом 100 тыс. км. Снижение спутника до 50–75 тыс. км приводит к возникновению конвекционной нестабильности жидкого ядра, достаточной для запуска «динамо-машины», и созданию единого магнитного поля планеты.
Продолжительность работы этой электрической машины могла меняться от нескольких миллионов лет в случае совпадения направления вращения Марса и спутника, до 400 млн. лет – в обратном варианте. Дальнейшее снижение спутника привело к его разрушению на пределе Роша (2,44 радиуса планеты при равномерно распределенной плотности), исчезновению глобального магнитного поля и падению обломков на Марс. Естественно, это привело к глобальным изменениям климата. Природа локальных магнитных аномалий остается для специалистов загадочной, так как магнитность слишком высока для обычных пород.
Комментируя сообщения, посвященные этой теме, напомню, что еще в прошлом веке при поисках кимберлитовых трубок аэрогеофизическими методами нами были обнаружены сильные локальные магнитные аномалии в Восточной Сибири. Было установлено, что они возникли за счет концентрации новой минеральной разновидности – «стабильного маггемита».
Карта локальных магнитных аномалий Марса. Отчетливо видна пятнисто-мозаичная картина распределения этих аномалий. Изображение NASA
Карта локальных магнитных аномалий Марса.
Отчетливо видна пятнисто-мозаичная
картина распределения этих аномалий.
Изображение NASA
Этот минерал представляет собой магнитную окись железа (Fe2O3). Его происхождение мы связали с образованием Попигайской астроблемы, известной огромными запасами алмаза и его модификации – минерала лонсдейлита (см. «НГ-науку» от 24.10.12). Алмаз и лонсдейлит возникли за счет залежей каменного угля, а стабильный маггемит – путем прокаливания древней красноцветной коры выветривания Якутии, состоящей из гидроксидов железа – Fe(OH)3.
Красноцветные железистые коры выветривания распространены только на двух планетах Солнечной системы – на Земле и... на Марсе. Их объединяют одинаковые условия образования: наличие свободного кислорода атмосферы, воды и тепла при обязательном наличии жизни. Кислород в нашей атмосфере появился 3 млрд. лет назад за счет фотосинтеза, дающего в современных условиях за 4–5 тыс. лет 1200 трлн. т кислорода – столько, сколько его содержится в атмосфере Земли.
Марс называют Красной планетой потому, что он покрыт толстым слоем красно-бурых оксидов и гидроксидов железа, превращенных в песок и пыль водой и ветром. Но эти красноцветы магнитны, поскольку удар упавшего спутника прокалил их и превратил лимонит в маггемит. Американцы установили в коре выветривания Марса до 10% этого минерала. Значит, сначала было глобальное окисление поверхности Марса, а уж потом – удар спутника и «омагничивание» гидроксидов железа. По нашим подсчетам, на окисление базальтов Марса ушло свободного кислорода в четыре-пять раз больше, чем его сейчас в атмосфере Земли. Надо учесть, что поверхность Марса составляет только 28% от поверхности Земли. Иначе говоря, глубинные породы Марса окислялись в течение миллиардов лет, и значит, столько же времени существовала и эволюционировала жизнь. Мы также считаем, что жизнь на Марсе погибла от падения на его поверхность крупного спутника в районе южного полюса, в области Эллада, где находятся огромный метеоритный кратер и наиболее интенсивные магнитные аномалии.
Антипод Эллады – участок северного полушария с группой гигантских вулканов, крупнейший из которых – Олимп высотой 26 км и диаметром 600 км. Возможно, их появление связано с мощным ударом, воздействовавшим на жидкое ядро, выбросившим вещество ядра в виде лавы и остановившим работу «динамо-машины» Марса.
Сейчас у Марса имеются два естественных спутника – Фобос (Страх) и Деймос (Ужас). Фобос вращается на расстоянии всего 5920 км от поверхности планеты, вблизи от предела Роша. Астрономы считают, что через 40 млн. лет он рухнет на Марс. Для третьего спутника Марса, уже прошедшего предел Роша и убившего жизнь на планете, мы еще в прошлом веке предложили название Танатос – Смерть.
Магнитные аномалии в районе Эллады мы связываем с концентрацией новообразованного маггемита в прокаленном ударом красноцветном железистом чехле Марса.
Минерал лимонит. Примерно такие же породы и придают красный цвет поверхности Марса.
По аналогии с Марсом маггемит Восточной Сибири накапливается в речных отложениях и дает сильные магнитные аномалии в поле Земли. Высокая концентрация маггемита в районе южного полюса Марса вполне может объяснить локальные магнитные аномалии и пятнисто-мозаичную структуру магнитного поля Красной планеты.
Мы согласны с канадскими учеными, что спутник Марса действительно рухнул на его поверхность, но в отличие от них мы уверены, что катастрофа произошла значительно позже, когда черные базальты Марса уже покрылись красно-бурой железистой «ржавчиной». Третий спутник Марса, Танатос, упал, когда существовали жизнь, богатая кислородная атмосфера, речная сеть, железистая кора выветривания.
Возможно, не один, а все три спутника когда-то «включили» магнитное поле Марса. Но очевидно, что Танатос недавно «выключил» его, нарушив своим ударом конвекцию в жидком ядре планеты. Упавший спутник, судя по кратеру Эллада, был размером с Фобос. В результате удара Танатоса над планетой возникло гигантское плазменно-пылевое магнитное облако, взаимодействовавшее со знакопеременным «умиравшим» магнитным полем Марса. Железистая магнитная пыль осела на его поверхность.
Сепарация магнитного материала в магнитном поле создала многочисленные широтные магнитные аномалии разных знаков. Ударная волна прошла сквозь жидкое ядро, остановила «динамо-машину» Красной планеты и породила гигантские вулканы. При этом была потеряна плотная атмосфера планеты. Космос наглядно показал на примере Марса, что такое реальный апокалипсис. Хорошо, что Луна от нас удаляется. А если бы она приближалась?..
На наш взгляд, роль магнитного поля как защитного экрана при плотной атмосфере планеты преувеличена. По данным доктора физико-математических наук профессора В.П. Щербакова и Н.К. Сычевой, только последние 5 млн. лет Земля имеет сравнительно сильное магнитное поле. Низкое магнитное поле Земли существовало на значительной части неогена (геологический период, который начался 23 млн. лет назад и закончился примерно 2,6 млн. лет назад), а частично и еще раньше – в девонском периоде (420–360 млн. лет назад). То есть сотни миллионов лет жизнь на Земле успешно развивалась в условиях слабого магнитного поля, поскольку ее защищала атмосфера. Сходные процессы, видимо, происходили и на Марсе.
Главный же вывод, который можно сделать из всего сказанного, заключается в том, что канадские ученые тоже пришли к мысли о том, что третий спутник Марса существовал. Мы уже дали ему название – Танатос. Его падение на поверхность Красной планеты уничтожило всю марсианскую экосистему – атмосферу, теплый климат и высокоразвитую жизнь. Об этом свидетельствуют такие удивительные артефакты, как черепа ящеров и антропоидов в кратере Гусева, скелет ящерицы в кратере Гейла и многие другие.
Удар астероида пришелся на океан – глубокую впадину у южного полюса. Выбитый из своего ложа океан разлился по поверхности Марса и пропитал почвы солями – поваренной солью, сульфатами натрия, магния и кальция. Эти соли не случайно найдены марсоходами на поверхности Марса: они остались от бурных потоков, прокатившихся по планете.
Характер этих остатков и костных отщепов свидетельствует об отсутствии минерализации и «окаменения» костей. Танатос действительно рухнул на Марс, но апокалипсис, сопровождаемый гибелью экосистемы, произошел не миллиарды, а всего лишь тысячи лет назад.
Устьянцев Валерий Николаевич:
Метеорит возрастом 4,6 миллиарда лет подтвердил теорию происхождения воды на Земле
Камень родом примерно из самого начала нашей Солнечной системы помогает разгадать тайну происхождения воды на Земле. Дело в том, что он содержит воду, по своему составу схожую с водой на нашей планете.
Естественные науки Науки о Земле 4325
17.02.2023, ПТ, 14:58, Мск
Космический камень возрастом 4,6 миллиарда лет приземлился перед обычным домом в английском городе Уинчкомб в феврале 2021 года. Его зарегистрировали специальные метеорные камеры. Огненный шар также был заснят многочисленными домашними системами видеонаблюдения и автомобильными видеорегистраторами, было более 1000 свидетельств очевидцев падения и сообщений о звуке удара.
Основная часть метеорита (319,5 г) была обнаружена на следующий день после падения. Камень упал на подъездную дорожку, расколовшись на осколки — и они, и пыль от падения были собраны всего через 12 часов после события.
Самый большой неповрежденный кусок метеорита Уинчкомб — это камень с коркой плавления весом 152 г, найденный на сельскохозяйственных угодьях в марте 2021 года. В общей сложности ученые получили 531,5 г материала для исследований.
Космический камень представляет собой углеродистый хондрит — редкий богатый углеродом тип метеоритов. Прямые связи между углеродистыми хондритами, упавшими на Землю, и их «родительскими» телами в Солнечной системе, наблюдаются редко. Метеорит Уинчкомб в настоящее время считается наиболее точно зарегистрированным падением углеродистого хондрита. Его внеатмосферная орбита и возраст с учетом воздействия космических лучей подтверждают, что он прибыл на Землю вскоре после выброса из примитивного астероида.
Так как камень был найден всего через несколько часов после того, как врезался в Землю, то он практически не изменился под воздействием земной среды. К тому же состав метеорита тоже был восстановлен через несколько часов после падения. Это значительно упрощает анализ и исследования камня и фактически ученые с его помощью могут «взглянуть» на первоначальный состав Солнечной системы.
Чтобы проанализировать минералы и элементы внутри породы, исследователи отшлифовали, нагрели и облучили камень рентгеновскими лучами и лазерами. Так они выяснили, что метеорит произошел от астероида на орбите вокруг Юпитера.
Но самое важное, что согласно анализу, метеорит содержит воду, которая очень схожа по химическому составу с водой на Земле. Благодаря этому ученые нашли подтверждение теории о том, как наша планета была засеяна животворящей субстанцией.
Когда скалистые планеты молодой Солнечной системы только образовались из горячих газовых и пылевых облаков, они располагались слишком близко к центральной звезде. Из-за этого лед с их поверхностей испарялся, что превращало молодую Землю в бесплодный и негостеприимный объект. Гипотеза предполагала, что все изменилось после того, как Земля остыла. Это случилось, когда поток ледяных астероидов принес замерзшую воду на нашу планету.
Теперь новый анализ метеорита Уинчкомб, опубликованный в Science Advances, подтвердил эту теорию. Почти нетронутый изотопный состав водорода метеорита Уинчкомб сравним с земной гидросферой, и 11% массы метеорита составляет вода.
Водород в воде астероида находился в двух формах: обычный водород и изотоп водорода — дейтерий. Оказалось, что соотношение водорода и дейтерия такое же, как в воде на Земле. Это является весьма убедительным свидетельством того, что вода в камне и вода на нашей планете имеют общее происхождение.
Также удалось определить, что камень содержит большое количество гидратированных силикатов, образующихся в ходе реакций флюид-порода, а также углерод- и азотсодержащие органические вещества, включая растворимые белковые аминокислоты — строительные блоки для белков, участвующих в формировании жизни.
Для дополнительного подтверждения теории можно также проанализировать другие камни вокруг Солнечной системы.
Устьянцев Валерий Николаевич:
21:00 18.03.2021
В космосе найдены сложные органические соединения на основе углерода
Полициклические ароматические углеводороды в Молекулярном облаке Тельца
© M. Weiss / Center for Astrophysics | Harvard & Smithsonian
Полициклические ароматические углеводороды в Молекулярном облаке Тельца
Читать ria.ru в
МОСКВА, 18 мар — РИА Новости. Ученые впервые однозначно идентифицировали конкретные молекулы полициклических ароматических углеводородов (ПАУ) в холодном молекулярном облаке TMC-1, в котором еще даже не началось звездообразование. До этого астрономы находили только коллективные следы присутствия ПАУ в межзвездной среде и считали, что эти сложные органические соединения возникают в момент гибели звезд. Результаты исследования опубликованы в журнале Science.
Считается, что значительная часть углерода в космосе существует в форме крупных молекул полициклических ароматических углеводородов (ПАУ). С 1980-х годов косвенные свидетельства в виде инфракрасных полос, характерных для всего класса ПАУ, указывали на то, что этих молекул в космосе много, но идентифицировать конкретные соединения до сих пор не удавалось.
На Земле ПАУ эффективно образуются только при высоких температурах. Они возникают как побочные продукты сжигания ископаемого топлива. Их можно найти, например, в следах обугливания на приготовленной на гриле пище.
Исследователи из проекта GOTHAM (Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules) в поисках ПАУ детально изучили с помощью радиотелескопа Грин-Бэнк (GBT) в США туманность TMC-1 — часть Молекулярного облака Тельца, большого дозвездного облака пыли и газа, расположенного примерно в 450 световых годах от Земли.
Поскольку ожидалось, что ПАУ будут производить большое количество очень слабых сигналов в пределах своих спектральных интервалов, авторы разработали технологию выделения неуловимых сигналов из шума с помощью суммирования и обработки результатов наблюдений через специальные фильтры.
Астрономы впервые наблюдали загадочную "космическую медузу"
18 марта 2021, 12:35
В итоге, в холодном межзвездном облаке с температурой 10 градусов выше абсолютного нуля авторы идентифицировали около дюжины конкретных молекул ПАУ, две из которых описаны в опубликованной статье. Это 1- и 2-цианонафталин — соединения, состоящие из двух конденсированных бензольных колец с присоединенной нитрильной группой.
По словам авторов, открытие указывает на то, что сложные молекулы ПАУ могут образовываться при гораздо более низких температурах, чем считали ранее.
"Мы всегда думали, что полициклические ароматические углеводороды в основном образуются в атмосферах умирающих звезд, — приводятся в пресс-релизе Массачусетского технологического института слова первого автора статьи, доцента кафедры химии и главного исследователя проекта GOTHAM Бретта МакГуайра (Brett McGuire). — В этом исследовании мы обнаружили их в холодных темных облаках, где звезды еще даже не начали формироваться".
Среди прочих, авторы нашли в облаке TMC-1 сложные молекулы, никогда ранее не обнаруживаемые в межзвездной среде: 1- и 2-цианоциклопентадиен, HC11N, винилцианоацетилен, бензонитрил, транс-(E)-иановинилацетилен, HC4NC, пропаргилцианид и другие.
"Мы наткнулись на совершенно новый набор молекул, отличный от всего, что мы видели ранее, и это полностью меняет наше представление о том, как эти молекулы взаимодействуют друг с другом, — говорит МакГуайр. — Считается, что полициклические ароматические углеводороды содержат до 25 процентов углерода во Вселенной. Теперь впервые у нас есть прямое окно в их химию, которое позволит нам подробно изучить, как эволюционирует этот массивный резервуар углерода".
"Мы видим, как ПАУ реагируют с образованием более крупных молекул. Со временем эти молекулы становятся достаточно большими и начинают собираться в зародыши межзвездной пыли", — объясняет ученый.
Авторы считают, что их открытие может стать ключом к разгадке роли углерода в формировании звезд и планет.
Навигация
Перейти к полной версии