Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре
О волновой природе напряжений и деформаций и механизме концентрации пи
Устьянцев Валерий Николаевич:
Структура небулярного облака и межзвездной среды
Химический состав межзвездного газа оказался близок составу атмосфер Солнца и звезд. В нем преобладают атомы водорода (Н) и гелия (Не), в качестве примесей – кремний (Si), магний (Мg), железо (Fе), алюминий (Аl), кислород (О), углерод (С), азот (N) и некоторые простые их соединения. Имеются в ничтожном количестве (в концентрации порядка 10-7) и молекулы СН, СН+, СN, Н2. Плюс означает ионизованные молекулы. К настоящему времени известно уже около 60 разнообразных молекул в составе межзвездного газа. Все атомы и ионы среды находятся в невозбужденном состоянии. Это значит, что вследствие чрезвычайно высокого разрежения их взаимные столкновения практически исключены и все атомы, ионы и молекулы будут находиться на невозбужденном (основном) энергетическом уровне. На этом уровне они могут только поглощать излучение на определенных резонансных частотах. Вот по этим резонансным линиям поглощения в спектре и была получена информация о химическом составе межзвездной среды. Неоценимую роль в этих исследованиях сыграли внеатмосферные наблюдения со спутников и межпланетных станций. Дело в том, что земная атмосфера поглощает все внеземное излучение с длиной волны короче 2900 А, соответствующей далекой ультрафиолетовой области спектра.
Кроме газа в межзвездной среде наблюдаются и мельчайшие частички (размером меньше микрона) межзвездной пыли. Она фиксируется в красной области спектра, так как синие и фиолетовые лучи пылинками поглощаются. Покраснение удаленных объектов служит указанием на наличие между ними и наблюдателем космической пыли.В состав пылинок входят металлы, силикаты, графит, льдинки застывшего газа и т.д. Форма многих из них вытянутая – они являются как бы элементарными диполями, оси которых ориентированы вдоль магнитных силовых линий межзвездных магнитных полей. Это очень слабые поля, имеющие напряженность всего 10-5 эрстед. Но поскольку межзвездный газ является преимущественно ионизованным, то он обладает высокой электропроводимостью и, следовательно, магнитные силовые линии приклеены к газу, следуя причудливым очертаниям межзвездных туманностей. Кинетическая (максвелловые скорости движения атомов и молекул) температура газа и частиц межзвездной среды составляет несколько Кельвинов. Средняя плотность пыли в 100 раз меньше плотности газа и составляет 10-26 г/см3.
Таким образом, материнское досолнечное облако представляло собой сложную систему из пылевого, газового материала и более крупных фрагментов типа метеоритов древнего возраста и вещества сверхновой, ассимилированной туманностью в более позднее время. Это гетерогенное разновозрастное вещество и явилось исходным материалом для построения Солнечной системы. (Яндекс).
Пояс Копера. Главный пояс располагается между Марсом и Юпитером. Радиус орбит большинства астероидов составляет 2,06-3,27 а.е. В этом интервале расположено более 93% астероидов. Впрочем, отдельные семейства астероидов могут располагаться на дистанции от 1,78 до 4,2 а.е от светила. Астероидные орбиты располагаются примерно в той же плоскости, что и земная орбита. Среднее отклонение от этой плоскости не превышает 4°, хотя, например, у астероида Барселона орбита наклонена под углом в 32,8°э. У находящихся на близких орбитах астероидов почти совпадают и периоды обращения вокруг Солнца. Самые близкие к светилу астероиды совершают полный оборот за 3,5 года, а самые удаленные тратят на это 6 лет.
Физические характеристики. Некоторые думают, что пояс астероидов – это очень плотное скопление небесных тел, но это не так. На 2020 год известно более 300 тысяч астероидов, образующих этот пояс, а общее их количество может превышать несколько миллионов. Однако из-за большой протяженности пояса они находятся друг от друга на огромном расстоянии. Ни один космический аппарат, проходивший через этот пояс, ни разу не столкнулся с каким-нибудь объектом. Более того, вероятность такого столкновения или даже случайного сближения зонда с астероидом меньше одной миллиардной. Суммарная масса всех небесных тел в главном поясе оценивается в 3,4•1021 кг, что в 1600 раз меньше массы Земли. При этом треть этой массы приходится на один объект – Цереру. Это карликовая планета, ранее считавшаяся наикрупнейшим астероидом. Замечено, что астероиды, находящиеся ближе к звезде, имеют большую отражающую способность. Также в составе данных небесных тел меньше воды. Вероятно, что солнечная радиация буквально «выдула» воду и другие легкие элементы на удаленные области главного пояса. Температура у поверхности астероидов также зависит от дистанции до Солнца. На расстоянии 2,2 а.е. от звезды температура составляет – 73° С, а на дистанции 3,2 а. е. она падает до – 108° С.
Состав. Всего в поясе насчитывается примерно 200 астероидов, чей диаметр (или наибольший линейный размер) превышает 100 км. Ещё 1000 объектов имеют размер более 15 км. Средняя звездная величина астероидов равна 16. Только один астероид, носящий имя Веста, можно увидеть с земли невооруженным взглядом. Все астероиды можно разделить на несколько больших групп, или спектральных классов. Крупнейшими из них являются: класс С – сюда входят темные астероиды, состоящие из углерода; класс S – светлые астероиды, состоящие из кремния. класс M – металлические астероиды. Существуют и другие, более редкие классы (классы B, Е, Р, А, D и т. д.). Иногда астероид нельзя строго отнести к одному классу, и тогда считается, что он имеет смешанный тип, который обозначается двумя буквами, например CG.
К классу С относится более 75% всех астероидов. Они отличаются темным цветом (со слабым красным оттенком) и поэтому их отражающая способность невелика. Их альбедо находится в диапазоне от 0,03 до 0,1, то есть они отражают лишь 3-10% падающего света. Из-за этого астероиды класса С сложно обнаружить, поэтому в реальности их доля в главном поясе может быть существенно выше 75%. В составе этих небесных тел помимо углерода присутствует вода, поэтому их можно обнаружить с помощью наблюдений в диапазоне инфракрасного излучения. Крупнейший астероид этого класса – Гигея, чей диаметр оценивается в 434 км.
Астероиды класса S состоят из силикатов (то есть обычных камней) и железа. Их доля в главном поясе оценивается примерно в 17%. Иногда такие астероиды называют каменными. Альбедо этих объектов находится в диапазоне 0,1-0,22. Крупнейшим каменным астероидом считается Юнона, чей диаметр составляет 234 км. Большинство каменных астероидов сосредоточено во внутренней, наиболее приближенной к Солнцу части главного пояса.
Доля астероидов класса М составляет 10%, они преимущественно располагаются в центре главного пояса. Предполагается, что металлические астероиды образовались при столкновении планетезималей и являются фрагментами их ядер. Стоит отметить, что ученые не уверены в том, что металлические астероиды состоят именно из металлов. Дело в их слишком малой плотности. Это означает, что либо астероиды класса М по своему составу подобны астероидам иных классов, либо в их внутренней структуре есть много полостей. Альбедо металлических астероидов находится в пределах от 0,1 до 0,19, то есть они обладают умеренной отражающей способностью.
Происхождение. Первые версии о происхождении главного стали появляться в 1802 г., когда и были обнаружены первые объекты, относящиеся к нему. Тогда Г. Ольберс предположил, что они являются осколками планеты Фаэтон, которая погибла из-за какого-то космического катаклизма. Эта теория подтверждалась правилом Тициуса–Боде, утверждавшим, что между Марсом и Юпитером должна существовать ещё одна планета. В дальнейшем выяснилось, что масса вещества в главном поясе меньше массы Луны в 25 раз. Такой массы явно недостаточно для формирования планеты. Современная гипотеза предполагает, что главный пояс возник из-за мощной гравитации Юпитера. Когда в Солнечной системе только начинался процесс синтеза планет, на некоторых орбитах постепенно формировались всё более крупные тела – планетезимали. Именно они, соединившись, и формировали планеты.
Однако зародыш Юпитера формировался быстрее, чем планетезимали в районе главного пояса. В какой-то момент гравитация Юпитера стала препятствовать объединению планетезималей в единую планету, ведь она разгоняла их. Дело в том, что, что при столкновении планетезималей с малой скоростью (до 0,5 км/с) они «слипаются», то есть объединяются в одно целое. Если же скорость столкновения значительно выше, то при ударе планетезимали разваливаются на куски. Именно разгон планетезималей гравитацией Юпитера и привел к формированию главного пояса. Разрушение планетезималей началось где-то 4-4,5 млрд лет назад. С тех пор большая часть вещества, находившаяся в главном поясе, покинула его. Считается, что сегодня в главном поясе располагается лишь тысячная доля того вещества, изначально там располагавшегося. Это значит, что на данной орбите могла сформироваться полноценная планета, по размерам близкая к Земле.
С началом космической эры стало возможно исследования астероидов с помощью космических аппаратов. Сначала астероиды сфотографировал зонд «Галилео, который снял астероиды Ида и Гаспра в 1993 г. С тех пор каждый аппарат, летящий в дальний космос, обязательно по пути пролетает и мимо какого-нибудь объекта в главном поясе и фотографирует его. Первый космический зонд, созданный специально для исследования астероида – это NEAR Shoemaker. Его запустили в 1996 г., а в феврале 2000 г. он вышел на орбиту астероида Эрос. Удалось детально исследовать его химический состав, а также построить трехмерную модель небесного тела. В 2001 г. зонд осуществил посадку на Эрос и в течение двух недель исследовал его грунт на глубине до 10 см. В 2003 г. был запущен японский зонд «Хаябуса», который исследовал астероид Итокава. Аппарат смог собрать образцы грунта с Итокавы и отправить их на Землю. Следующий аппарат, исследовавший главный пояс – это станция DAWN. В 2011-2012 г. она исследовала астероид Веста, а с 2015 по 2018 г. – Цереру. В результате удалось получить почти 69 тысяч фотографий этих объектов и множество других данных.
Крупнейшие объекты пояса астероидов. Крупнейшее тело в главном поясе – это Церера. Она настолько велика, считается карликовой планетой, а не астероидом. Ее диаметр достигает 926 км, и на нее приходится 32% массы всего главного пояса. В отличие от астероидов, имеющих однородное строение, у Цереры есть каменное ядро и мантия, состоящая из водяного льда. Интересно, что у Цереры иногда появляется атмосфера. Это происходит тогда, когда она приближается близко к Солнцу. Повышение температуры приводит к сублимации льда и появлению водяного пара, который и образует атмосферу. При удалении от Солнца Церера свою атмосферу теряет. Церера отражает лишь 5% солнечного света, и поэтому ее невозможно увидеть невооруженным взглядом.
Второе по массе тело – Веста. Её диаметр достигает 526 км, а ее масса оценивается в 9% от массы главного пояса. Это единственный астероид, который можно наблюдать без телескопа и бинокля, ведь он отражает 42% солнечного света. У южного полюса Весты есть огромный кратер. Он образовался при столкновении, при котором возникло целое семейство астероидов, двигающихся в непосредственной близости от Весты.
Третий по массе объект – это Паллада, на которую приходится 7% массы главного пояса. Диаметр Паллады оценивается в 512 км. Паллада отличается большим углом наклона собственной оси, который равен 34°. У других больших астероидов этот наклон меньше 10°.
Четвертый по размерам астероид – это Гигея, чей диаметр оценивается в 431 км. На него приходится 3% массы всего пояса. Это углеродный астероид, имеющий альбедо 0,07. У него также есть свое семейство астероидов, образовавшееся при столкновении Гигеи с крупным небесным объектом.
Устьянцев Валерий Николаевич:
Угеводороды планет-гигнатов
«На Обероне нет даже — это показали спектральные исследования — привычных землянам открытых скальных пород. Плотность наиболее известных спутников Урана невелика около 3 г/см3. Выше, чем у воды, но ниже, чем у планет земной группы, имеющих металлическое ядро — 5,5 г/см3. Самые крупные спутники Урана — это силикатные шары диаметром от 1100 км (Умбриэль) до 1600 км (Титания), покрытые коркой обыкновенного водного льда. Именно льда, так как температура поверхности спутников Урана всего на 80° выше абсолютного нуля.
Исследования с помощью инфракрасных телескопов показали, что на поверхности спутников Урана имеются протяженные черные области неизвестной природы. В лабораторных условиях были исследованы спектральные характеристики многих веществ. И оказалось, что лучше всего черные пятна объясняются присутствием обыкновенного древесного угля.
Ученые решили искать другие вещества со схожими спектральными характеристиками. Постепенно выявился круг «претендентов» для объяснения черных пятен на Обероне и других спутниках Урана. Среди них были магний, ряд силикатов, а также некий полимер темноватого цвета, найденный в составе метеоритов.
Виновником» скорее всего мог быть именно полимер. Американские ученые С. Сквайрс и лауреат Нобелевской премии К. Саган выдвинули следующую гипотезу. Под действием ультрафиолетового солнечного излучения часть метана, в изобилии присутствующего в системе Урана, разлагается на водород и углерод, которые, в свою очередь, вступают в соединение с метаном и образуют целую серию разной степени сложности углеводородных полимеров, в том числе и багрового цвета. Именно такие полимеры и были обнаружены в составе метеоритов.
Серные озера. Ио — спутник Юпитера, Ио — это красновато-оранжевый шар, масса и размеры которого близки к Луне, а плотность характерна для горных скальных пород — 3,5 г/см3. Спектрометр, установленный на «Вояджере», показал на Ио наличие двуокиси серы .Поверхность Ио буквально покрыта серой в различной форме и модификациях. Серные холмы, застывшие потоки серной лавы, простирающиеся на десятки и сотни километров. Температура поверхности Ио,составляет около 130° К. Однако наблюдения в ИК-диапазоне показали, что на Ио есть аномально горячие пятна. Одно из них — черное кольцо неправильной геометрической формы диаметром около 250 км, его назвали «лавовым озером» — имеет температуру плавления серы 385° К. Особенность
Ио — высокая вулканическая активность. На снимках, переданных на Землю приборами космических аппаратов, были видны также и действующие вулканы, выбрасывающие частички лавы и газы со скоростью 450 м/с на высоту порядка 500 км. Разогрев недр Ио происходит за счет радиоактивного распада естественных долгоживущих изотопов урана, тория, радия и других элементов.
Ионизированное вещество от вулканических выбросов (кроме серы, в его составе обнаружили кислород, углерод, железо), поднимаясь с поверхности Ио, взаимодействует с магнитосферой Юпитера и далее движется вдоль магнитных силовых линий.
Радиационная обстановка в районе орбиты Ио напоминает кольцо хорошего ускорителя — потоки плазмы создают электрический ток с силой порядка несколько миллионов ампер.
Есть гипотеза, согласно которой частицы из вулканов Ио захватываются кольцом, Юпитера.
Воды на Ио не обнаружили. Зато на ближайших соседях Ио — Европе, Ганимеде, Каллисто — вода присутствует в изобилии. Необычный цвет этих планет — золотистая Европа, бронзовый Ганимед, темно-коричневый Каллисто — указывает на наличие серы.
Ледяное зеркало. Подсчитано, что количество воды на Нептуне во много раз превышает массу нашей планеты. Разумеется, при столь низких температурах вода существует в виде льда. В составе больших планет — Юпитера, Сатурна, Урана и Нептуна — преобладают водород, гелий и неон, вода — на четвертом месте, а далее — метан, аммиак, сероводород, окислы кремния и марганца, железо и никель.
Тяжелых элементов практически нет. Таков примерно и состав их спутников, за исключением свободного водорода и гелия, которые за миллиарды лет эволюции должны улетучиться.
Большинство лун Юпитера и Сатурна содержат воду. Ее так много, что поверхности этих спутников, как панцирем, скованы ледяной корой. Планетные льды, как правило, смешаны с метаном, аммиаком, сернистым водородом.
Энцелад — спутник Сатурна. Этот шар диаметром около 500 км с необычайно гладкой зеркальной поверхностью отражает почти 100% падающего на него света. Энцелад, плотность которого чуть больше воды— 1,1 г/см3, состоит преимущественно из льда. Поверхность Энцелада покрыта кратерами различного диаметра (скорее всего вулканического происхождения), ее пересекают борозды, уступы, рытвины. Вулканы на Энцеладе особого рода — во время их извержений из недр планеты выбрасывается вода. Разогрев его недр происходит за счет радиоактивного распада элементов, сконцентрированных в ядре.
Тритон — спутник Нептуна. Он находится на расстоянии 4,3 млрд. км от Земли. Небольшая, по массе сравнимая с Луной планета с красноватой поверхностью. Спектральные исследования показали, что на Тритоне есть молекулярный, не связанный в химические соединения азот. Безусловно, он присутствовал в составе протопланетного облака, из которого образовалась Солнечная система. Но это обстоятельство проблему не снимает, ибо аномальное количество азота все равно требует своего объяснения. На Тритоне, как и на других лунах планет-гигантов, имеется огромный ассортимент органических соединений, добиогенного происхождения.
Радиационным окрашиванием полимеров объясняют и красноватый цвет планеты: Тритон, как и другие спутники, не защищен собственным магнитным полем от попадания на его поверхность космических лучей.
Но вот плотность Тритона — 8 г/см3 — ставит перед учеными новую проблему. Рекордная для планет Солнечной системы плотность могла бы означать, что ядро Тритона состоит из железа и других металлов.
Япет. Процессом радиационной полимеризации астрономы объясняют и особенности спутника Сатурна Япета. Поверхность Япета, радиус которого составляет всего 800 км, выглядит весьма необычно. Одно полушарие этой планеты темное, другое светлое, хорошо отражающее падающий свет.
Темный цвет поверхности Япета ученые связывают с присутствием либо черного углерода, либо представителя семейства углеводородов, который образовался из метана под действием солнечного света. Не исключено также, что темная сторона Япета покрыта затвердевшими углеводородами, скажем, асфальтом или застывшей нефтью.
Обнаружение сложных углеводородов на других планетах позволяет в ином ракурсе посмотреть на проблему происхождения нефти. Обилию углеводородов на небесных телах удивляться не приходится: и водород и углерод относятся к числу самых распространенных элементов Вселенной. И действительно, углеводороды, эти непосредственные слагаемые нефти, обнаружили не только на планетах, но и в кометных хвостах, и в веществе метеоритов, в атмосферах холодных звезд, и просто в межзвездном пространстве.
Отметим:
Конская Голова. Астрономы из Франции, Испании и Германии обнаружили в межзвёздном пространстве нашей галактики пропинилидин (C3H+). Этот углеводород является "братом" природного газа и нефтепродуктов, встречающихся на Земле. Как оказалось, значительные его запасы хранит Конская Голова – туманность в созвездии Ориона. Исследователи изучали спектры излучения туманности при помощи телескопа Института радиоастрономии (IRAM) в миллиметровом диапазоне длин волн и обнаружили характерные линии молекул, содержащих радикал C3H+. Астрономы также выявили в Конской Голове 30 других молекул. Учёных удивило, что туманность, которая давно известна как большая межзвёздная лаборатория, порождающая всё новые химические вещества, обладает значительными запасами углеводородов. "В туманности содержится в 200 раз больше углеводородов, чем воды на Земле!" — рассказывает один из авторов работы Вивиана Гусман (Viviana Guzman).
Отметим, что пропинилидин находили и ранее, но не в нашей галактике. Принадлежность его к семье углеводородов, являющихся основным источником энергии на нашей планете, делает Конскую Голову активным космическим "нефтеперерабатывающим заводом". Туманность находится в 1300 световых годах от нас в созвездии Ориона и получила своё название за характерные очертания. В дальнейшем учёные хотели бы разобраться в процессах производства пропинилидина в недрах этого необычного на вид космического образования. Подробности об уже проделанной работе можно узнать в статье в журнале Astronomy & Astrophysics.
- Нагрев превратил искусственную межзвездную органику в воду с нефтью. Это говорит о том, что почти все запасы воды на Земле могли образоваться из органического вещества © Валерий Шарифулин/ТАСС/.
Новости Яндекс.Дзен.
«ТАСС, 17 июля. Значительная часть запасов воды на Земле могла появиться не из комет или астероидов, а в результате разложения сложных органических молекул в первые эпохи существования планеты. К такому выводу пришли японские планетологи, которые при нагреве в лаборатории образцов искусственного аналога органики из межзвездных газопылевых облаков получили воду и нефть. Описание их исследования опубликовал научный журнал Scientific Reports».
21:00 18.03.2021
В космосе найдены сложные «органические» соединения на основе углерода. Полициклические ароматические углеводороды в Молекулярном облаке Тельца.
- Комета Чурюмова – Герасименко.
6:006.07.2015. На комете 67Р (Чурюмова – Герасименко), богата «органическими» соединениями. Однако ни орбитальный аппарат Rosetta, ни зонд Philae не были оборудованы приборами, позволяющими искать следы жизни.
Выяснили, что: средний состав найденных молекул можно описать формулой C1H1,56O0,134N0,046S0,017, что идентично растворимому «органическому» веществу из хондритных метеоритов и включает в себя множество цепочечных, циклических и ароматических углеводородов в примерном соотношении 6:3:1.
Некоторые молекулы были впервые достоверно обнаружены в коме комет — это нонан (C9H20), нафталин (C10H8), бензиламин (C7H9N), бензойная кислота (C7H6O2), этилен (C2H4) и пропен (C3H6).
За два года работы вблизи кометы «Розетта» нашла на ней ксенон, иней, прекусоры сахаров, высокомолекулярные органические вещества, не обычные скалы, увидела смену окраски ядра и в комемете, а также впервые в истории высадила на комету зонд «Филы» (Александр Войтюк). Космический аппарат «Rosetta» впервые однозначно обнаружил твердое «органическое» вещество в виде сложных углеродсодержащих молекул.
- Титан — спутник Сатурна, отличающийся крупными размерами, наличием плотной атмосферы и углеводородных озёр.
Титан является единственным известным за пределами Земли объектом Солнечной системы, на поверхности которого присутствует жидкость (реки, озёра, моря).
Эта жидкость представляет собой смесь жидких углеводородов, главным образом, жидкого этана (6÷79%), жидкого метана (5÷10%), жидкого пропана (7÷8%), жидкого бутилена (1%), а также жидкого аргона, азота, угарного газа и водород (менее 1%).
В этой жидкости растворены твёрдые вещества (в молярных долях:
- циановодород — 2÷3% ,
- бутан — 1%, ацетилен — 1%,
- бензол, - метилцианид и углекислый газ — менее 1%).
Спутник состоит из каменистого ядра радиусом 1700 км, содержащего 55% общей массы спутника, и жидкой оболочки из гидратов аммиака и метана, над которой располагается ледяная кора. Имеет слабое магнитное поле и атмосферу, состоящую преимущественно из азота.
Устьянцев Валерий Николаевич:
Источник: https://sunplanets.info/solnechnaya-sistema/glavnyj-poyas-asteroidov-raspolozhenie-sostav-krupnejshie-obekty-i-foto
«Анализ арктической породы указал на протечку ядра Земли — из него вытекает гелий-3
TODO:
Георгий Голованов 23 октября 2023 г.
Объединенная команда геохимиков из США обнаружила крайне высокий уровень гелия-3 в камнях на Баффиновой Земле, острове, расположенном между Канадой и Гренландией. Присутствие этого изотопа может служить доказательством того, что ядро нашей планеты вытекает наружу. Причем происходит это прямо сейчас. Если это действительно так, для ученых открывается уникальная возможность исследовать состав ядра планеты — вместе с гелием-3 на поверхность, очевидно, вытекают и другие его составные части.
то не первая находка гелия-3 в лавовых потоках Баффиновой Земли, которые указывают на возможность просачивания ядра наружу, через земную кору. Изотоп гелия был активным участником формирования планеты, после чего остался в ее ядре. Но если он попадает на поверхность, то по своей природе стремится подняться в атмосферу и раствориться в космическом пространстве. Таким образом, как пишет Phys.org, если он и встречается у поверхности, то крайне редко, и скорее всего, попал туда из ядра.
Цифровой прорыв: как искусственный интеллект меняет медийную рекламу.
Ученые из Института океанографии Вудс-Хоул и Технологического института Калифорнии отправились на Баффинову Землю, заинтригованные возможностью доказать, что земное ядро вытекает наружу. Взяв образцы из нескольких лавовых потоков, они обнаружили гораздо более высокое содержание гелия-3, чем давали предыдущие исследования — выше, чем где бы то ни было на Земле.
Кроме того, оказалось, что зафиксированное здесь соотношение гелия-3 к гелию-4, распространенному изотопу, достигло наивысшего показателя по сравнению с любым другим местом на Земле. По мнению ученых, это еще один фактор, указывающий на то, что гелий-3 вытекает из ядра планеты наружу.
Если геохимики смогут доказать, что гелий-3 действительно выходит на поверхность из самого центра Земли, значит, что весь материал, который его окружает, тоже возник там. В таком случае, у ученых появится материал для исследования, о котором они не могли прежде даже мечтать.
Новейшие научные данные утверждают, что в центре Земли находится твердый металлический шар, нечто вроде планеты внутри планеты, существование которого делает возможным жизнь на поверхности в том виде, в каком мы ее знаем (именно благодаря ему у Земли есть магнитосфера). Как внутреннее ядро возникло и развивалось — науке неизвестно, но группе геофизиков из США удалось с помощью сейсмических волн установить, что оно представляет из себя не гомогенную массу, как считалось ранее, а мозаику из различных материалов».
Устьянцев Валерий Николаевич:
Токсичность нефти
«Механизмы поражения органов нефтяными продуктами (дистиллятами) а) Углеводородный пневмонит. При серьезном отравлении нефтяными дистиллятами поражаются в основном легкие, когда токсичность обусловлена скорее аспирацией, а не гематогенным распространением. Небольшие количества нефтяных дистиллятов при попадании в трахеи вызывают несколько видов легочной интоксикации, тогда как симптомы поражения центральной нервной системы обусловлены внутрижелудочным поступлением дистиллятов в большом количестве. б) Легочная патология. Аспирированные углеводороды ингибируют сурфактант, что ведет к альвеолярной нестабильности, преждевременному закрытию дистальных воздушных путей, несогласованности вентиляции, перфузии и последующей гипоксемии. Хотя потеря сурфактанта, вероятно, вызывает ранние физиологические аномалии, прямое повреждение легочных капилляров обусловливает появление патологических признаков, варьирующих от химического пневмонита и геморрагической бронхопневмонии до обширного отека легких. Первоначально цианоз может быть следствием замещения кислорода испаряющимися углеводородами. Последующая гипоксемия развивается вследствие потери сурфактанта и прямого поражения альвеол. Бронхоспазм может способствовать нарушению вентиляции и перфузии. Гистопатологические изменения легких включают интерстициальное воспаление, ателектаз, гиперемию, васкулярный тромбоз, бронхиальный и бронхиолярный некроз, интраальвеолярное кровотечение, отек и образование полиморфонуклеарного экссудата. в) Липоидная пневмония. Нефтяные дистилляты с высокой вязкостью (например, тяжелые смазочные материалы, минеральное масло, жидкий парафин) вызывают липоидную пневмонию, которая более локализована и сопровождается менее интенсивным воспалением, чем пневмония, индуцируемая нефтяными дистиллятами с низкой вязкостью, например керосином или минеральным заменителем тюленьего жира. г) Ингаляция. Намеренное вдыхание нефтяного дистиллята (например, нюханье бензина) обычно не вызывает химического пневмонита, что, возможно, обусловлено альвеолярной концентрацией и длительностью экспозиции. Неврологические аномалии, которые, по сообщениям, ассоциированы с хроническим нюханьем бензина, включают поведенческие изменения и двигательные расстройства (дрожание покоя и дрожание действия, миоклонические судороги, хорея и атаксия), а также пирамидальные симптомы и припадки. Описана энцефалопатия, вызванная органическими соединениями свинца, которая сопровождалась тошнотой, рвотой, возбуждением, раздражительностью, галлюцинациями, дезориентацией и затуманиванием сознания. Кальций-динатрийэдетат и димеркапрол (БАЛ — бронхоальвеолярный лаваж), по-видимому, усиливают экскрецию свинца с мочой. Влияние на заболеваемость и смертность еще предстоит исследовать. д) Центральная нервная система. Индуцированная аспирацией гипоксия обусловливает угнетение центральной нервной системы при поглощении нефтяных дистиллятов, которые не содержат ароматических углеводородов. Плохое желудочно-кишечное всасывание ограничивает токсическое действие продуктов перегонки нефти на центральную нервную систему. Метаболизм некоторых летучих соединений
Экотоксикологическая характеристика компонентов нефти.
Нефть - это жидкий природный раствор, состоящий из большого числа углеводородов разнообразного строения и высокомолекулярных смолисто-асфальтеновых веществ. В нем растворено некоторое количество воды, солей, микроэлементов. Нефти всех месторождений мира отличает, с одной стороны, огромное разнообразие видов (нет двух совершенно тождественных нефтей из разных пластовых залежей), с другой - единство ее состава и структуры, сходство по некоторым параметрам. Элементный состав десятков тысяч разнообразных индивидуальных представителей нефти во всем мире изменяется в пределах 3 - 4 % по каждому элементу. Главные нефтеобразующие элементы: углерод (83 - 87 %), водород (12 - 14 %), азот, сера, кислород (1 - 2 %, реже 3 - 6 %за счет серы). Десятые и сотые доли процента нефти составляют многочисленные микроэлементы, набор которых в любой нефти примерно одинаков (Пиковский Ю. И., 1988).
Легкая фракция нефти с температурой кипения ниже 200 С состоит из низкомолекулярных алканов, циклопарафинов (нафтенов) и ароматических углеводородов. Основу этой фракции составляют алканы с числом углеродных атомов С5--С11. В среднюю фракцию с температурой кипения выше 200 С входят алканы с числом углеродных атомов С12--С20 (твердые парафины), циклические углеводороды (циклоалканы и арены). Тяжелая фракция нефти представлена высокомолекулярньтми гетероатомными компонентами нефти -- смолами и асфальтенами (Иларионов С.А., 2004).
Легкая фракция, куда входят наиболее простые по строению низкомолекулярные метановые (алканы), нафтеновые (циклопарафиновые) и ароматические углеводороды, - наиболее подвижная часть нефти.
Компоненты легкой фракции, находясь в почвах, водной или воздушной средах оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеродной цепью, содержащиеся в основном в легких фракциях нефти. Эти углеводороды лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цитоплазменные мембраны организма. Большинством микроорганизмов нормальные алканы, содержащие в цепочке менее 9 атомов углерода, не ассимилируются, хотя и могут быть окислены. Токсичность нормальных алканов ослабляется в присутствии нетоксичного углеводорода, который уменьшает общую растворимость алканов. Вследствие летучести и более высокой растворимости низкомолекулярных нормальных алканов их действие обычно не бывает долговременным. Если их концентрация не была летальной для организма, то со временем нормальная жизнедеятельность организма восстанавливается (при отсутствии других токсинов).
Многие исследователи отмечают сильное токсическое действие легкой фракции на микробные сообщества и почвенных животных. Легкая фракция мигрирует по почвенному профилю и водоносным горизонтам, расширяя, иногда значительно, ареал первоначального загрязнения. На поверхности эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами. Значительная часть легкой фракции нефти разлагается и улетучивается еще на поверхности почвы или смывается водными потоками.
Компоненты средней фракции, с числом углеродных атомов С12--С20, практически нерастворимы в воде. Их токсичность выражена гораздо слабее, чем у более низкомолекулярных структур.
Содержание твердых метановых углеводородов (парафина) в нефти (от очень малых величин до 15 - 20 %) - важная характеристика при изучении нефтяных разливов на почвах. Твердый парафин нетоксичен для живых организмов, но вследствие высоких температур застывания (+18 оС и выше) и растворимости в нефти (+40 оС) в условиях земной поверхности он переходит в твердое состояние, лишая нефть подвижности. Твердые парафины, выделенные из нефти и очищенные, с успехом используются в медицине.
Твердый парафин очень трудно разрушается, с трудом окисляется на воздухе. Он надолго может «запечатать» все поры почвенного покрова, лишив почву свободного влагообмена и дыхания. Это в первую очередь приводит к полной деградации биоценоза.
К циклическим углеводородам в составе нефти относятся нафтеновые (циклоалканы) и ароматические (арены). Общее содержание нафтеновых углеводородов в нефти изменяется от 35 до 60 %.
О токсичности нафтеновых сведений почти не имеется. Вместе с тем имеются данные о нафтенах как стимулирующих веществах при действии на живой организм. Примером может служить лечебная нефть.
Циклические углеводороды с насыщенными связями окисляются очень трудно. Биодеградацию циклоалканов затрудняют их малая растворимость и отсутствие функциональных групп.
Основные продукты окисления нафтеновых углеводородов - кислоты и оксикислоты. В ходе процесса уплотнения кислых продуктов частично могут образовываться продукты окислительной конденсации - вторичные смолы незначительное количество асфальтенов.
Ароматические углеводороды (арены) имеют большое значение в экологической геохимии. К этому классу можно отнести как собственно ароматические структуры, так и «гибридные» структуры, состоящие из ароматических и нафтеновых колец.
Содержание ароматических углеводородов в нефти изменяется от5 до 55%, чаще всего от 20 до 40 %. Полициклические ароматические углеводороды (ПАУ), т. е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 %. Как и нафтенах, в этих молекулах вместо атома водорода в одном или нескольких радикалах присоединена алкановая цепочка, что позволяет рассматривать эти молекулы как замещенные гомологи соответствующих голоядерных углеводородов. В нефти наиболее распространены гомологи нафталина, всегда имеются также гомологи фенантренов, бензфлуоренов, хризанов, пирена, 3,4-бензпирена и др. Незамещенные ароматические углеводороды в сырой нефти встречаются редко и в незначительных количествах.
Среди голоядерных ПАУ большое внимание обычно уделяется 3,4-бензпирену как наиболее распространенному представителю канцерогенных веществ. Данные о содержании 3,4-бензпирена в нефти всегда неоднозначны.
Ароматические углеводороды - наиболее токсичные компоненты нефти. В концентрации всего 1 % в воде они убивают все водные растения; нефть, содержащая 38 % ароматических углеводородов, значительно угнетает рост высших растений. С увеличением ароматичности нефтей увеличивается их гербицидная активность. Моноядерные углеводороды - бензол и его гомологи - оказывают более быстрое токсическое воздействие на организмы, чем ПАУ. ПАУ медленнее проникают через мембраны, действуют более длительное время, являясь хроническими токсикантами.
Ароматические углеводороды трудно поддаются разрушению. Наиболее устойчивы к окислению голоядерные структуры, в частности 3,4-бензпирен, при обычных температурах окружающей среды они практически не окисляются. Содержание всех групп ПАУ при трансформации нефти в почве постепенно снижается.
Смолы и асфальтены относятся к высокомолекулярным неуглеводородным компонентам нефти. В составе нефти они играют исключительно важную роль, определяя во многом ее физические свойства и химическую активность. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, нерастворимые в низкомолекулярных углеводородах. Смолы и асфальтены содержат основную часть микроэлементов нефти. С экологических позиций микроэлементы нефти можно разделить на две группы: нетоксичные и токсичные. Микроэлементы в случае повышенных концентраций могут оказывать токсическое воздействие на биоценоз. Среди токсичных металлов, концентрирующихся в смолах и асфальтенах, наиболее распространенные ванадий и никель. Соединения никеля и особенно ванадия в повышенных концентрациях действуют как разнообразные яды, угнетая ферментативную активность, поражая органы дыхания, кровообращения, нервную систему, кожу человека и животных. Достаточных данных о токсичности органической части смол и асфальтенов не имеется. Высокая канцерогенность появляется только в высокотемпературных продуктах пиролиза, коксования и крекинга. В продуктах, получаемых в процессах каталитического гидрирования, канцерогенность резко снижается и исчезает.
Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается поровое пространство почв. Смолисто-асфальтеновые компоненты гидрофобны. Обволакивая корни растений, они резко ухудшают поступление к ним влаги, в результате чего растения засыхают.
Из различных соединений серы в нефти наиболее часто обнаруживаются сероводород, меркаптаны, сульфиды, дисульфиды, тиофены, тиофаны, свободная сера.
Сернистые соединения оказывают вредное влияние на живые организмы. Особенно сильным токсическим действием обладают сероводород и меркаптаны. Сероводород вызывает отравление и летальный исход у животных и человека при высоких концентрациях (Пиковский Ю. И., 1988).
В биогеохимическом воздействии нефти на экосистемы участвует множество углеводородных и неуглеводородных компонентов, в том числе минеральные соли и микроэлементы.
Токсичные действия одних компонентов могут быть нейтрализованы присутствием других, поэтому токсичность нефти не определяется токсичностью отдельных соединений, входящих в ее состав. Необходимо оценивать последствия влияния комплекса соединений в целом. При нефтяном загрязнении тесно взаимодействуют три группы экологических факторов:Сложность, уникальная поликомпонентность состава нефти, находящегося в процессе постоянного изменения;Сложность, гетерогенность состава и структуры любой экосистемы, находящейся в процессе постоянного развития и изменения;
Многообразие и изменчивость внешних факторов, под воздействием которых находится экосистема: температура, давление, влажность, состояние атмосферы, гидросферы и т. д.о
Очевидно, что оценивать последствия загрязнения экосистем нефтью и намечать пути ликвидации этих последствий необходимо с учетом конкретного сочетания этих трех групп факторов (Кузнецов Ф. М., 2003).
Устьянцев Валерий Николаевич:
Температура нефтяного окна.
Памир. Участки диафтореза и гранитизации - изменяют плотность пород и гомогенизируют их физические свойства. В юго-западном Гиссаре метаморфический комплекс пород, по расчетам А.В. Покровского, - сформирован на глубинах 5-6 км., при температуре 700-800о и давлении 10-11 кбар. (андалузит-силлиманитовый тип метаморфизма), по кордиерит-гранатовому парагенезису Т=680-750о и Р=6,5 - 7,5 кбар [Ахмеджанов, Абдулаев, Борисов, Хохлов 1975].
Р.Б. Баратов (1973) установил, что ранний протерозой отложения юго-западного Памира и Каратегина сначала подверглись метаморфизму гранулитовой фации при Т=750О С и Р = 7 кбар в Каратегине и до Т = 800о С и Р = 7,5 кбар и выше, в юго-западном Памире, в дальнейшем повсеместно высокотемпературному диафторезу и ультраметаморфизму в условиях амфиболитовой фации.
На Памире нет мощных осадочных оганогенных толщь, но есть 7 месторождений нефти. «Вдоль южного края Кураминского массива, расположен Южно–Фергано-Центрально-Кызылкумский пояс основных и ультраосновных пород (карбон) - «горячая точка», протяженностью 1200 км, при ширине 30 км» [И.Х. Хамрабаев, 1975].
Выявлены прерывистые тела ультрабазитов и в других районах, все они тяготеют к зонам глубинных разломов. Тела базитов – до складчатые. Покровы основного состава пород и джеспилиты выполняют роль экранов, то-есть, способствуют процессу генерации УВ, нефти и их миграции в благоприятные для локализации условия, которые определяются РТ фактором (Амударьинский ОБ углеводородов). В Южном Тянь-Шане согласно простиранию глубинных разломов, располагаются цепочки гипербазитов (контакты - протрузивные, которые рассматриваются как производные верхней мантии [Хамрабаев, 1972].
«Новейшая неоген-четвертичная постплатформенная горообразовательная стадия. В Южном Тянь Шане — проявление высокой сейсмической активности, на севере — формируются сводовые рифтовые поднятия и расчленяющие их разломы и грабены, которые отнесены к Трансазиатскому поясу Наливкина. Эпоха сопровождалась подъемом нагретых вод с растворенными в них ряда металлов и летучих соединений ртути, сурьмы. Циркулировали также нагретые нефтяные и приповерхностные воды. Ими в осадочных формациях молодых мезозойских и кайнозойских покровов дополнительно переоткладывались и концентрировались газ, нефть, сера, стронций, руды цветных металлов, ряд редких и рассеянных элементов. (Т=680-750о С и Р=6,5 - 7,5 кбар» (В.И. Попов, 1976)
Корниловская свита (C2 b-m) Тмах> 465ᵒC.
Формация Ombilin (N1) небол»»ьшого бассейна Ombilin на западе Центральной Суматры (Индонезия) Т мах = 435-4470 С.
«Простая связь
Самое простое органическое соединение - метан. Его молекула состоит из пяти атомов - одного атома углерода и четырех атомов водорода, равномерно распределенных в пространстве вокруг этого центрального атома углерода. Здесь мы сталкиваемся прежде всего с важнейшим постулатом органической химии - во всех незаряженных органических молекулах углерод всегда четырехвалентен. Графически это выражается в том, что он должен быть соединен с химическими символами других элементов или того же углерода четырьмя черточками. В метане все четыре атома водорода находятся на одинаковом расстоянии от атома углерода и максимально удалены друг от друга в пространстве.
В молекуле метана атом углерода находится в центре правильного тетраэдра, а четыре атома водорода - по его вершинам.
Так выглядит молекула метана с учетом размеров атомов.
Чтобы построить модель молекулы, возьмем тетраэдр, т. е. правильный четырехгранник, составленный из равносторонних треугольников, и поместим в его центр атом углерода. Атомы водорода расположатся по вершинам тетраэдра. Соединим все водороды с центральным атомом углерода. Угол α между двумя такими линиями составит 109 градусов и 28 минут.
Итак, мы построили модель метана. Но каковы размеры молекул в действительности? В последние десятилетия при помощи физических методов исследования (о них речь впереди) удается точно определить межатомные расстояния в молекулах органических соединений. В молекуле метана расстояние между центрами атома углерода и любого водородного атома равно 0,109 нм (1 нанометр, нм, равен 10-9 м). Чтобы представить наглядно, как выглядит молекула в пространстве, пользуются моделями Стюарта - Бриглеба, в которых атомы изображаются шариками определенного радиуса.
Теперь зададимся таким вопросом: какие силы связывают атомы в молекуле органического соединения, почему атомы водорода не отрываются от углеродного центра?
Атом углерода состоит из положительно заряженного ядра (его заряд равен +6) и шести электронов, занимающих различные орбитали* вокруг ядра, каждой из которых соответствует определенный уровень энергии.
*(Орбиталь можно рассматривать как область пространства, в которой наиболее велика вероятность встретить электрон)
Два электрона занимают самую нижнюю, ближайшую к ядру орбиталь. Они всего сильнее взаимодействуют со "своим" ядром и участия в образовании химических связей не принимают. Иное дело - остальные четыре электрона. Считают, что в так называемом невозбужденном атоме углерода, т. е. в отдельном атоме, не образующем никаких связей с другими атомами, эти электроны располагаются следующим образом: два на нижнем подуровне s и два на более высоком подуровне р. Несколько упрощенно и схематично можно считать, что облако, которое образует электрон, находящийся на s-подуровне, имеет форму сферы. Облака р-электронов выглядят объемными восьмерками, причем эти восьмерки могут быть расположены в пространстве вдоль осей х, y и z. В соответствии с этим в каждом атоме имеются три р-орбитали: px, рy и pz. Итак, каждая орбиталь в атоме имеет определенную форму и особым образом расположена в пространстве.
Для того чтобы вступить во взаимодействие с другими атомами, образовать с ними химические связи, атом углерода должен прежде всего перейти в особое, возбужденное состояние. При этом один электрон перескакивает с s-орбитали на p-орбиталь. В результате один электрон занимает сферическую s-орбиталь, а три остальных электрона образуют три орбитали-восьмерки. Однако такое положение атому энергетически невыгодно. Более низкой энергии атома соответствуют четыре одинаковые орбитали, симметрично расположенные в пространстве. Поэтому происходит смешивание, усреднение, или, как говорят, гибридизация имеющихся орбиталей, и в результате получаются четыре новые одинаковые орбитали.
Эти орбитали-гибриды также похожи на восьмерки, но восьмерки однобокие: электронная плотность почти полностью смещена в одну сторону. Такие гибридизованные орбитали обозначаются sp3 (по числу электронов с разных не гибридных орбиталей, участвующих в их образовании: один с s-орбитали и три - с р-орбитали).
Как же устроена молекула метана? К каждой из четырех гибридных орбиталей, направленных от атома углерода в разные стороны (а точнее, в углы воображаемого тетраэдра, который можно построить вокруг него), подходят атомы водорода Н. Атом водорода- это ядро с зарядом +1 (для легкого изотопа обычного водорода - просто протон), и один электрон, занимающий сферическую орбиталь вокруг протона. Облака "углеродных" и "водородных" электронов перекрываются, а это и означает образование химической связи. Чем сильнее перекрываются облака электронов разных атомов, тем прочнее связь. Теперь становится понятным, почему гибридизованные орбитали выгоднее - ведь такая однобокая, выпяченная в одну сторону восьмерка может гораздо сильнее перекрываться с облаком водородного электрона, чем менее протяженные в пространстве не гибридные орбитали. Отметим, что эти рассуждения носят несколько условный характер: чистый, так сказать, одиночный и невозбужденный атом углерода не существует реально. Поэтому нет смысла обсуждать, как же в действительности происходят все эти трансформации орбиталей, называемые гибридизацией. Однако для удобства описания химических связей посредством формул и чисел такие условности оказываются полезными. Мы в этом еще не раз убедимся.
Как получить метан?
Один из простейших путей - подействовать водой на карбид алюминия:
Однако карбид алюминия - слишком дорогое исходное вещество для получения такого обычного, такого дешевого продукта, как метан, и получать его из других соединений нет надобности - ведь природный газ на 85-98 % состоит из метана.
Метан - один из основных "кирпичиков", из которых можно строить органические соединения. Какие же это соединения и как их получить из метана?
Вообще-то метан - вещество сравнительно инертное, и набор химических реакций, которые можно с ним провести, невелик.
Возьмем смесь двух газов - метана и хлора и поместим ее в стеклянный сосуд. Если этот сосуд держать в темноте, то никакой реакции не наблюдается. Но попробуем осветить склянку солнечным светом ..
Квант света взаимодействует с молекулой хлора, в результате молекула расщепляется на две части - два атома хлора:
Получившиеся атомы гораздо активнее молекул, они тут же атакуют молекулы метана и захватывают атомы водорода. При этом образуются молекулы хлористого водорода НСl и весьма неустойчивые, очень активные частицы, так называемые метальные радикалы ⋅СН3:
Метальный радикал далее "расщепляет" молекулу хлора:
В результате получается уже известный нам атом хлора (его дальнейшую судьбу нетрудно предугадать: он атакует новые молекулы метана, и все повторяется) и хлорметан, или метилхлорид,- производное метана, в котором один из атомов водорода заменен на хлор.
Реакция, о которой мы рассказали, принадлежит к разряду так называемых цепных реакций, в которых каждая стадия, как в цепи, связана с предыдущей и с последующей. Активные частицы - продукт одной стадии (здесь это атомы хлора и метальные радикалы ⋅СН3) -используются в следующей стадии как исходные вещества. Открытие цепных реакций было одним из крупных событий в истории химической науки, а академик Н. Н. Семенов и английский ученый С. Н. Хиишельвуд за вклад в изучение таких реакций и создание их теории были удостоены Нобелевской премии.
Если в реакцию вводить такие количества реагентов, чтобы на одну молекулу хлора приходилось две молекулы метана, то в основном мы получим хлористый метил СН3Сl. Если же взять хлор в избытке, то реакция замещения пойдет дальше и получится, помимо хлористого метила, еще хлористый метилен СН2Сl2, хлороформ СНСl3 и, наконец, продукт полного замещения водорода на хлор, четыреххлористый углерод ССl4:
Но не будем забывать о нашей задаче: построить различные сложные молекулы из простых кирпичиков-молекул метана. Для этого нам понадобится метилхлорид. Если подействовать на это соединение металлическим натрием, то из каждых двух молекул СН3Сl образуется одна молекула этана, в которой имеется связь углерод - углерод:
Что такое этан? Это метан, в котором один из водородов заменен на радикал метил ⋅СН3. А сам этот радикал, как мы уже знаем, получается при отрыве от метана одного водородного атома.
Если теперь в этане заместить один из водородов (любой атом) на метил, то мы получим новое вещество - пропан СН3-СН2-СН3. Как это можно сделать практически, мы знаем: сначала в метане и этане заместить один водород на хлор и затем подействовать на смесь метил- и этилхлорида натрием (эта реакция называется реакцией Вюрца в честь французского химика, ее открывшего):
Пойдем дальше. Заместим в пропане один из атомов водорода на хлор. Оказывается, теперь уже не все равно, какой атом замещать! Замещая водород при крайнем атоме углерода (таких атомов два) или же при среднем, мы получим два разных соединения: нормальный пропилхлорид (н-пропилхлорид) и изопропилхлорид:
Заменим теперь в каждом из этих соединений атомы хлора на метальные группы. Мы получим два различных бутана - нормальный (т. е. не разветвленный) бутан (н-бутан) и изо-бутан:
Приставим к полученным молекулам еще по "кирпичику". Начнем с н-бутана. Здесь можно заместить на метил один из крайних атомов водорода. Получим нормальный пентан. Можно заместить один из средних водородов. Придем к изо-пентану. По-видимому, из н-бутана больше ничего нового не получишь. Обратимся к изо-бутану. Если в нем заместить один из крайних водородов (в СН3-группах), то придем к уже упоминавшемуся изо-пентану, а замещая средний единственный атом водорода, получим неопентан:
Продолжать эту процедуру можно до бесконечности. Все эти соединения называются углеводородами (точнее - предельными, насыщенными углеводородами, или алканами), потому что состоят они всего из двух элементов-углерода и водорода. В любом алкане число водородных атомов составляет 2n + 2, где n - число углеродных атомов. Поэтому формулу предельного углеводорода можно в общем виде записать так: СnН2n+2.
В построении наших структур мы, надо сказать, во-время остановились. Дело в том, что количество возможных изомеров катастрофически быстро возрастает с увеличением числа углеродных атомов в молекуле алкана. Так, для декана, углеводорода С10Н22, возможно 75 различных изомеров, число изомеров для углеводорода С20Н42 (эйкозан) равно 366 319. Количество же возможных изомеров для тетраконтана, углеводорода С40Н82, даже трудно себе представить: 62 491 178 805 831.
Теперь становится понятно, почему уже сегодня известно такое огромное число органических соединений - несколько миллионов - и почему в этом отношении химия органическая далеко обогнала химию неорганическую. А ведь до сих пор говорилось только о самых простых представителях органических веществ - о насыщенных углеводородах.
Мы выводили ряд изомерных углеводородов из метана, пользуясь реакцией Вюрца. Однако на практике так никто не поступает. Дело в том, что простейшие углеводороды наряду с метаном содержатся в природном газе, состав которого различен для разных месторождений. Например, в газе Северо-Ставропольского месторождения содержится 85 % метана, около 5% этана, 2,5% пропана и 1,4% пентана и более тяжелых углеводородов. Газ Газлинского месторождения состоит из метана на 98 %, этана в нем лишь 1,6 %. Много углеводородов в нефти, но об этом - в следующих главах.
Углеводороды низшие - метан, этан, пропан и бутан - бесцветные газы без запаха или со слабым запахом бензина. Углеводороды от пентана до пентадекана С15Н32 - жидкости и, наконец, высшие углеводороды при обычной температуре - твердые вещества.
Некоторые примеры использования метана
По мере увеличения числа атомов углерода растет температура кипения и плавления соединения.
У предельных углеводородов есть другое название - парафины, отражающее их химическую инертность (по латыни parum affinis - малое сродство). И все же они довольно широко применяются в химической промышленности для получения самых разнообразных веществ. Основные направления промышленного использования метана показаны на схеме.
Прежде чем закончить разговор о метане и предельных углеводородах, ответим на один вопрос: как осуществляется связь в парафинах между двумя атомами углерода, например, в этане? Здесь все просто - вокруг каждого углеродного атома имеются, как и в метане, четыре гибридизованные sр3-орбитали, три из них осуществляют связи с атомами водорода, а одна перекрывается точно с такой же орбиталью другого углеродного атома. Длина связи С-С составляет 0,154 нм.» (Шулькин Г.Б., 1984).
Навигация
Перейти к полной версии