Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре

О волновой природе напряжений и деформаций и механизме концентрации пи

<< < (72/79) > >>

Устьянцев Валерий Николаевич:
Физические свойства углеводородов
    I. Агрегатное состояние.
При стандартных условиях (Т = 298 К, Р = 1 атм) в зависимости от строения и молекулярной массы углеводороды могут быть газообразными, жидкими или твердыми веществами. Все углеводороды с длиной цепи С1 – С4 газообразны, С5 – С16 являются жидкостями. Углеводороды состава С19 и выше – твердые вещества. Тип углеродной цепи влияет на температуры кипения (t0k) и плавления (t0пл). Так, нормальные углеводороды в отличие от разветвленных изомеров имеют более высокие t0k и t0пл. Пример:
СН3-СН2-СН2-СН2-СН3 СН3-СН(СН3)-СН2-СН3
н-пентан изопентан (2-метилбутан)
t0k = +360С, t0пл = -1300С t0k = +280С, t0пл = -1600С
Между молекулами углеводородов в твердом и жидком состоянии действуют силы Ван-дер-Ваальса. Между ароматическими молекулами возникают силы  -  - электронного взаимодействия. Таким образом, силы сцепления между молекулами больше у нормальных углеродных цепей в жидких углеводородах, и отрыв молекулы от поверхности жидкости сложнее у н – цепей, чем у изомерных разветвленных. В твердых углеводородах фазовый переход твердое тело  жидкость определяется плотностью упаковки молекул. Эта упаковка компактнее у неразветвленных углеводородов. Поэтому н – углеводороды плавятся при более высокой температуре, чем разветвленные. Рыхлость упаковки молекул разветвленных углеводородов в твердой фазе обусловливает более слабые силы межмолекулярного взаимодействия, более низкие энергии кристаллической решетки.
Введение одной двойной связи несколько понижает t0k (на 5-70) по сравнению с алканами. Зависимость t0пл более сложна.
Сопряженные алкадиены по t0k напоминают алканы, т. е. сопряжение не влияет на температуру кипения. Так, даже ароматическое сопряжение в бензоле (t0k = +800С) не изменяет t0k (t0k циклогексана +810С). С увеличением числа  - связей и особенно в случае их сопряжения температуры плавления углеводородов заметно увеличиваются.
Пример:
Н2С=СН-СН2-СН3 Н2С=СН-СН=СН2 НС  С-С  СН
1-бутен 1,3-бутадиен 1,3-бутадиин
t0пл = -1850С t0пл = -1090С t0пл = -360С
Арены имеют в зависимости от типа более сложные зависимости t0k и t0пл. Среди дизамещенных бензола пара – изомеры всегда имеют более высокие t0пл (легче замерзают). Введение алкильной группы в бензол значительно повышает t0k (понижает летучесть) и сильно понижает t0пл.
       Цвет, запах, действие на кожный покров.
Почти все углеводороды бесцветны за исключением длинноцепочечных сопряженных полиенов. Пример:
Н2С=СН-(СН=СН-СН=СН)n-СН=СН2, при n = 2 и более появляется окраска (ликопин или каротин томатов). Одноядерные ароматические углеводороды бесцветные соединения.
Запах органического соединения определяется его летучестью и характером взаимодействия с рецепторами органов обоняния. Газообразные углеводороды (метан, этан, пропан, бутан) не имеют запаха. Все газообразные непредельные углеводороды, начиная от очень слабо пахнущего этилена, имеют запах, усиливающийся с увеличением количества  - связей и с их сопряжением. Ацетилен имеет слабый эфирный запах. Все жидкие углеводороды имеют запах керосина или бензина. Твердые углеводороды не пахнут при обычной температуре, если они не летучи.
Жидкие углеводороды раздражающим образом действуют на кожу.
       Плотность, структурированность жидкого состояния.
Большинство углеводородов имеют плотность (объемную массу) меньше 1. Плотность углеводородов возрастает по мере увеличения молекулярной массы. Так, в ряду алканов от С1 до С30 плотность возрастает от 0,415 до 0,810, в ряду алкенов от С3 до С6 от 0,610 до 0,674, в ряду алкинов от С3 до С10 от 0,690 до 0,766. Это обусловлено возрастанием сил межмолекулярного взаимодействия за счет появления  - связей.
В результате  -  -межмолекулярного взаимодействия арены заметно структурированы, в отличие от алканов, алкенов и алкинов. Поэтому их плотность значительно выше, чем у других углеводородов (для бензола d420 = 0,879) и мало зависит от алкилирования.
Примечание: обозначение d4t означает, что плотность жидкости измерена при температуре относительно плотности воды при 40С.
       Растворимость в воде и неводных растворителях.
При растворении углеводородов в растворителях определяющей является сольватация их молекул, т. к. структурированность жидких и твердых углеводородов невелика. Под сольватацией следует понимать всю сумму энергетических и структурных изменений, происходящих в системе в процессе перехода газообразных молекул, ионов, радикалов или атомов в жидкую фазу растворителя с образованием однородного раствора, имеющего определенный химический состав и структуру. Сольватация малополярных органических молекул осуществляется благодаря диполь – дипольным и дисперсионным взаимодействиям. Углеводороды хорошо сольватируются неполярными жидкостями, их галогенопроизводными, но плохо сольватируются полярными жидкостями (водой, спиртами, карбоновыми кислотами). Чем выше полярность растворителя, тем ниже растворимость углеводородов. Поэтому все углеводороды неограниченно растворяются друг в друге и в галогенопроизводных (дихлорэтане, хлороформе, четыреххлористом углероде, хлористом метилене и т. д. В то же время они слабо растворяются в спиртах, кетонах, сложных эфирах и практически не растворяются в воде.
       Горючесть, взрывоопасность, ядовитость.
Большинство углеводородов ядовито при хроническом вдыхании их паров. Особенно опасен бензол при длительной работе с ним, а также конденсированные арены с числом бензольных колец более 4. Последние способствуют развитию раковых заболеваний (канцерогенные вещества), поэтому попадание их в атмосферу и водоемы недопустимо
Все углеводороды горючи. При нагревании до 400-6000С без кислорода происходит обугливание, с кислородом – горение.
Физико – химические свойства и показатели пожарной опасности связаны между собой. Так, низкая температура кипения вещества указывает на низкую температуру вспышки данного вещества, а высокая химическая активность, особенно по отношению к окислителям, - на низкую температуру воспламенения.
Так, в ряду алканов с увеличением длины цепи повышается температура кипения, а следовательно, и температура вспышки. Повышается энтальпия сгорания, и понижается температура самовоспламенения.
При сгорании природного газа достигаются температуры до 10000С и выше, а сжигание ацетилена в смеси с кислородом позволяет получать пламя с температурой до 28000С. Это используется для резки и сварки металлов.
Представляет практический интерес расчет стандартных теплот сгорания углеводородов. Рассмотрим этот вопрос на примере алканов.
В общей формуле уравнение реакции горения алканов может быть записано следующим образом:
CnH2n+2 + (3n+1)/2 O2 = nCO2 + (n+1)H2O
Cтандартная теплота сгорания сН298 может быть рассчитана по разности стандартных теплот образования продуктов реакции и реагентов:
сН298 = обр Н298 (продукты) -  обр Н298 (реагенты).
Для расчета могут быть использованы величины обр Н298, приведенные, например, в “Справочнике химика”, 1966 г., Т. 1, стр. 774 – 837, 854 – 875. Ниже приводятся теплоты образования из С(тв), О2(газ), Н2(газ) газообразного СО2, жидкой воды (в кДж/моль).
СО2 (газ) обр Н298 = -393,3,
Н2О (ж) обр Н298 = -285,8.
Теплоты образования органических соединений с хорошим приближением можно рассчитывать, пользуясь так называемыми инкрементами. При этом исходят из предположения о том, что каждая структурная единица вносит в теплоту образования всегда один и тот же вклад, независимо от того, в каком соединении эта единица находится (принцип аддитивности). Ниже приведена таблица 2 структурных инкрементов, достаточных для расчета теплот образования алканов.
Величины структурных инкрементов
Элемент структуры
Структурный инкремент
кДж/моль
СН3
-42,34
-СН2-
-20,63

-4,56

3,35
Расчет стандартной теплоты сгорания пропана.
СН3 – СН2 – СН3 + 5О2  3СО2 + 4Н2О
Сумма теплот образования продуктов равна:
3(-393,3) + 4(-285,8) = -2323,1 кДж/моль
Сумма теплот образования реагентов:
(-42,34) 2 + (-20,63) = -105,31 кДж/моль
(Теплота образования О2(газ) из О2(газ) естественно равна нулю.
Разность дает стандартную теплоту сгорания пропана:
сН298 = -2323,1-(-105,3) = -2217,8 кДж/моль
При добыче угля в шахтах часто выделяется метан, образуя с воздухом взрывоопасные смеси. При взрыве метано-воздушных смесей развивается давление до 706 кПа. Поэтому там, где может выделяться природный газ, очень важно следить за составом воздуха. Для предупреждения взрыва при аварийном выделении метана и для тушения факела в закрытых объемах используют СО2 или азот. Минимальная концентрация диоксида углерода как огнетушащего средства равна 26% (об.), азота 39% (об.). С хлором метан образует смесь, взрывающуюся при действии на нее солнечного света или другого сильного источника света. Взрыв смеси метана с хлором может произойти и при ее нагревании до 1500С. Поэтому недопустимо совместное хранение баллонов с хлором и метаном.
Представитель алкенов – этилен способен самовозгораться в атмосфере хлора. Эта реакция протекает со взрывом, особенно если на смесь попадает солнечный свет. Поэтому совместное хранение баллонов с хлором и этиленом недопустимо. В отличие от метана этилен горит сильно светящимся пламенем, что обусловлено повышенным содержанием углерода. Смесь этилена с воздухом при поджигании взрывается с большой силой. Давление при этом достигает 764 кПа. Минимальная концентрация диоксида углерода как огнетушащего средства в этом случае составляет 42% (об.), а азота 52% (об.). Эти концентрации намного выше, чем в случае метана, что объясняется более широким диапазоном пределов воспламенения этилена.
Ацетилен под давлением неустойчив. При давлении более 196 кПа ацетилен способен разлагаться со взрывом до углерода и водорода. Температура взрыва 30000С, давление увеличивается приблизительно в 11 раз. Поэтому ацетилен нельзя хранить в сжатом состоянии, подобно другим газам, в стальных баллонах обычного типа. Для его хранения и перевозки применяют баллоны, наполненные активным углем, пропитанным ацетоном, в котором и растворяют ацетилен под давлением. При таком способе хранения ацетилен не взрывается даже при давлении 2940 кПа. Ацетилен с воздухом образует взрывчатые смеси. Пределы воспламенения: НПВ – 2% , ВПВ – 81%. Температура самовоспламенения 3350С. Ацетилено-воздушные смеси взрываются с большой силой. Давление взрыва достигает 931 кПа. Для предупреждения взрыва при аварийном выделении ацетилена и для тушения факела в закрытых помещениях требуется СО2 57% (об.), а азота 70% (об.).
Нефть – источник углеводородов, легко воспламеняющаяся жидкость. Температура вспышки ее лежит в пределах от -340С до +340С. Нефть имеет сравнительно низкую температуру самовоспламенения, лежащую в пределах от 260 до 375 К. Кроме того она имеет высокую теплоту сгорания (выше 42000 кДж/кг). При перегонке нефти получают следующие фракции:
Газовая фракция содержит алканы С1 – С4. Природный газ – это преимущественно метан ( 98%), баллонный газ – это в основном пропан и бутан.
Бензиновая фракция (t0k = 40 – 1800С) содержит углеводороды С5 – С12, всего до 100 и более индивидуальных соединений, в том числе алканы, циклоалканы, алкилбензолы.
Керосиновая фракция (t0k = 180 – 3000С) содержит в основном углеводороды С9 – С16. Это топливо для реактивных двигателе и сырье для крекинга.
Соляровый дистиллят (t0k = 300 – 4000С) состоит примущественно из углеводородов С15 – С25. Это сырье для получения дизельного топлива.
Мазут (t0k =  3000С в вакууме) имеет приблизительный состав С20 – С30. Используется как топливо для сжигания в топках котлов. Фракционной отгонкой под вакуумом получают смазочные масла, вазелин, парафин
Ароматический углеводород бензол – легковоспламеняющаяся жидкость, горит сильно коптящим пламенем. При взрыве паровоздушных смесей развивается давление до 784 кПа. Ароматические углеводороды тушат тонкораспыленной водой и пеной.

Устьянцев Валерий Николаевич:
Что происходит с углеродом при высоком давлении и температуре?

Углерод в природе существует в нескольких аллотропных модификациях: алмаз, графит и сюда же относят древесный уголь, а также этот элемент присутствует в синтетических модификациях: карбин, графен, фуреллен. Все эти модификации при определенных условиях могут переходить из одной модификации и другую, при этом меняется кристаллическая решётка вещества. Например, если взять более доступный графит (из простого карандаша грифель) и воздействовать на него высоким давлением при высокой температуре без доступа кислорода воздуха, то получите искусственные алмаза, обработанные эти алмазы называются фианитами, которые впервые были получены в СССР и институте ФИАН (Физический институт Академии наук), поэтому эти камушки получили такое название - фианиты в отличии от бриллиантов.
система выбрала этот ответ лучшим
в избранное ссылка отблагодарить
5 лет назад 
Рассмотрим фазовую диаграмму углерода.
Из нее видно, что при не слишком высоких температурах и в довольно большом интервале давлений термодинамически устойчивой является только одна аллотропная форма углерода - графит. А алмаз термодинамически при обычных температурах и давлениях неустойчив (но его переход в графит обычно происходит чрезвычайно медленно). Если графит при давлениях до 100 - 150 тысяч атмосфер (100 - 150 кбар) нагревать выше 4000 К, он расплавится. И будет просто жидкий углерод. При меньших температурах повышение давления сначала превратит графит в алмаз, а дальнейшее повышение давления или повышение температуры расплавит алмаз и превратит его в тот же жидкий углерод.
Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.
 труктурная изомерия.
Для  алканов характерна структурная изомерия – изомерия углеродного скелета..
Структурные изомеры — это соединения с одинаковым составом , которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.
Изомеры углеродного скелета отличаются строением углеродного скелета..
Например.
Для н-бутана (алкана с линейной цепью) существует изомер с разветвленным углеродным скелетом – изобутан.
Бутан
Изобутан


 
С увеличением числа атомов углерода в молекуле увеличивается количество изомеров, соответствующих данной формуле. У метана CH4, этана C2H6 и пропана C3H8 структурных изомеров нет.Количество изомеров в ряду алканов:
Молекулярная формула
Число структурных изомеров. 
C4H10
2
C5H12
3
C6H14
5
C7H16
9
C8H18
18
C9H20
35
C10H22
75
Оптическая изомерия. Если атом углерода в молекуле связан с четырьмя различными заместителями (атомами или атомными группами), например:.

то возможно существование двух соединений с одинаковой структурой, но различным пространственным строением.Молекулы таких соединений относятся друг к другу, как зеркальные изображение и предмет. При этом никаким вращением нельзя получить одну молекулу из другой..

Устьянцев Валерий Николаевич:
Источники и получение метана.
 
Метан — простейший углеводород, бесцветный газ без запаха. Его химическая формула — CH4. Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты со специфическим «запахом газа». Основной компонент природных (77—99%), попутных нефтяных (31—90%), рудничного и болотного газов (отсюда другие названия метана — болотный или рудничный газ).
На 90–95% метан имеет биологическое происхождение. Травоядные копытные животные, такие как коровы и козы, испускают пятую часть годового выброса метана: его вырабатывают бактерии в их желудках. Другими важными источниками служат термиты, рис-сырец, болота, фильтрация естественного газа (это продукт прошлой жизни) и фотосинтез растений. Вулканы вносят в общий баланс метана на Земле менее 0,2%, но источником и этого газа могут быть организмы прошлых эпох. Промышленные выбросы метана незначительны. Таким образом, обнаружение метана на планете типа Земли указывает на наличие там жизни.
Метан образуется при термической переработке нефти и нефтепродуктов (10—57% по объёму), коксовании и гидрировании каменного угля (24—34%). Лабораторные способы получения: сплавление ацетата натрия со щелочью, действие воды на метилмагнийиодид или на карбид алюминия. 
В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и калия) или безводного гидроксида натрия с уксусной кислотой. Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.
Свойства метана.
Метан горит в воздухе голубоватым пламенем, при этом выделяется энергия около 39 МДж на 1м3. С воздухом образует взрывоопасные смеси. Особую опасность представляет метан, выделяющийся при подземной разработке месторождений полезных ископаемых в горные выработки, а также на угольных обогатительных и брикетных фабриках, на сортировочных установках. Так, при содержании в воздухе до 5–6% метан горит около источника тепла (температура воспламенения 650—750 °С), от 5–6% до 14–16% взрывается, свыше 16% может гореть при притоке кислорода извне. Снижение при этом концентрации метана может привести к взрыву. Кроме того, значительное увеличение концентрации метана в воздухе бывает причиной удушья (например, концентрации метана 43% соответствует 12% O2).
Взрывное горение распространяется со скоростью 500—700 м/сек; давление газа при взрыве в замкнутом объёме равно 1 Мн/м2. После контакта с источником тепла воспламенение метана происходит с некоторым запаздыванием. На этом свойстве основано создание предохранительных взрывчатых веществ и взрывобезопасного электрооборудования. На объектах, опасных из-за присутствия метана (главным образом, угольные шахты), вводится т.н. газовый режим.
При 150-200 °С и давлении 30-90 атм метан окисляется до муравьиной кислоты.
Метан образут соединения включения — газовые гидраты, широко распространенные в природе.
Соединения углерода с водородом и серой
Водородные соединения – углеводороды. При взаимодействии углерода с водородом образуется метан:
С + 2Н2 = СН4.
В лабораторных условиях метан получают нагреванием безводного ацетата натрия со щелочью:
СH3COONa + NaOH = CH4 + Na2CO3.
Дисульфид углерода (сероуглерод) CS2 получают из метана обработкой парами серы при 600 0С с участием катализатора:
СН4 + 4S = СS2 + 2H2S,
или при взаимодействии с серой при повышенных температурах:
C + 2S = CS2.
Сероуглерод CS2 – бесцветная жидкость с запахом редьки, очень быстро улетучивается уже при комнатной температуре. Не растворим в воде. Растворяет жиры, смолы, каучук, серу, фосфор, йод. Ядовит!
Сероуглерод огнеопасен; при поджигании на воздухе сгорает с образованием соответствующих оксидов:
СS2 + 3O2 = 2SO2 + CO2.
Карбамид (мочевина) CO(NH2)2 – диамид уксусной кислоты. Его получают по реакции:
2NH3 + CO2 = CO(NH2)2 + H2O
Циан и его производные. Циан, точнее дициан C2H2 – бесцветный ядовит! Сгорает в кислороде; при нормальном давлении температура пламени достигает 4500 0С:
С2Н2 + 2О2 = 2СО2 + N2.
Циановодород HCN – бесцветная жидкость с характерным запахом горького миндаля. Очень ядовит! Смертельная доза – 50 мг HCN, продолжительность действия несколько секунд, HCN блокирует дыхание и вызывает удушье. Хорошо растворим в воде. Водный раствор HCN называется циановодородной (синильной) кислотой.
Цианиды – соли циановодорода, например, цианид натрия NaCN и цианид калия KCN хорошо растворимы в воде. Очень ядовиты, при хранении во влажном воздухе переходят в карбонаты с выделением циановодорода:
2KCN + H2O + CO2 = K2CO3 + 2 HCN.
Тиоцинат водорода HCNS (устаревшее название - роданистоводородная кислота) получают при кипячении растворов цианидов с серой:
KCN + S = KCNS.
HCNS образует соли – тиоционаты (ранее роданиды).
Кремний. Характеристика кремния
В отличие от углерода, кремний встречается в виде одной устойчивой модификации. Для кремния также характерна sp3-гибридизация электронных орбиталей. На внешнем электронном слое атома кремния есть валентные 3d-орбитали (Si: 3s23p23d0), что отличает структуру внешнего слоя атома кремния от атома углерода (С: 2s22p2). Вакантные 3d-орбитали могут участвовать в образовании связей, что сказывается на свойствах образуемых простых веществ: алмазоподобная модификация углерода – диэлектрик, а алмазоподобная модификация кремния – полупроводник.
Кремний – второй элемент по распространенности в атмосфере Земли (27,6%). Встречается только в связанном виде в различных горных породах и продуктах их выветривания, в виде оксидов и силикатов, из которых на 90% состоит земная кора.
Получение кремния:
1 В лаборатории кремний получают восстановлением диоксида кремния SiO2 магнием:
SiO2 + 2Mg = 2MgO + Si
2 В промышленности для получения кремния, его диоксид восстанавливают углеродом в электрической печи:
SiO2 + 2C = Si + 2CO.
3. Кремний высокой частоты (полупроводниковый) получают восстановлением водородом соединений SiCl4, SiHCl3:
SiCl4 + 2H2 = Si + 4HCl,
       SiHCl3 + H2 = Si + 3HCl а также термическим разложением силана.
Значительная доля земного метана образуется в толще океанической коры

(2.09.2019 • Кирилл Власов).
Американские геохимики предложили объяснение для механизма абиогенного синтеза метана в породах земной коры океанического типа. При охлаждении содержащих оливин габбро, базальтов и перидотитов происходит их растрескивание с последующим захватом флюидных включений. По мере остывания оливин реагирует с водой во включениях, что приводит к образованию новых минералов и водорода, который восстанавливает CO2 до метана. Этот метан затем может долго сохраняться во включениях, при случае выделяясь на поверхность. По оценкам ученых таким образом могла образоваться большая часть абиогенного метана на Земле.
Земная кора океанического типа образуется в зонах спрединга, в которых литосферные плиты раздвигаются, а базальтовые магмы поступают из верхней мантии на поверхность и при застывании формируют новую кору. Эта кора (в классическом случае медленно раздвигающегося срединно-океанического хребта) имеет простое слоистое строение (рис. 2). Сверху находится слой излившихся лав, под ним — дайки базальтов, еще ниже — габбро (интрузивный полностью раскристаллизованный аналог базальтов) магматической камеры с верлитами (оливин-клинопироксеновыми породами), на ее дне — слой «утонувших» кристаллов оливина (дуниты), а под ними — породы мантии из которых и выплавились базальты (перидотиты). От верхней мантии кору отделяет геофизическая граница Мохоровичича, характеризующаяся скачком скоростей продольных сейсмических волн.
Оливин (Mg, Fe)2SiO4 — один из основных минералов в базальтах, габбро и перидотитах. При взаимодействии с соленой морской водой, проникающей по трещинам, возникающим в остывающих породах, безводные оливины превращаются в другие — уже водосодержащие — минералы из группы серпентина. Самые распространенные из них — лизардит, антигорит и хризотил — имеют одну и ту же химическую формулу Mg3(Si2O5)(OH)4, но разные кристаллические структуры. Также образуются брусит Mg(OH)2, магнетит Fe3O4, причем реакция формирования последнего протекает с выделением водорода. Эти процессы, характерные для температур ниже 400°C, называют серпентинизацией. Попутно с минеральными реакциями происходит увеличение объема породы, так как кристаллы серпентина по объем больше чем кристаллы оливина. Это приводит к дальнейшему растрескиванию и способствует увеличению водного потока и интенсивности преобразования со временем. Трещины, образующиеся в кристаллах оливина, при температурах выше 400°C могут закрываться (как бы «залечиваться»), захватывая циркулировавший по ним раствор. Подобные растворы в геологии называют гидротермальными флюидами, а оставшиеся в кристаллах включения (то есть пузырьки жидкости и/или газа, застрявшие в кристаллах) — флюидными.
В земной коре много кислорода, поэтому наиболее распространенными соединениями во флюидных включениях являются вода и углекислый газ (рис. 3). Однако там, где кислорода меньше (то есть в восстановительных условиях), могут образовываться водород (H2) и метан (CH4). Такой метан называют абиогенным, чтобы подчеркнуть, что он сформировался без участия живых организмов. На ранних стадиях развития жизни он служил пищей метанотрофам и, возможно, повлиял на саму эволюцию живых существ. Сегодня почти весь земной CH4 имеет органическое (биогенное) происхождение: это обычный продукт жизнедеятельности живых существ. Метан считают косвенным признаком их присутствия и на других космических телах. Поэтому недавние сообщения о регистрации повышенной концентрации метана ровером «Кьюриосити» на Марсе (см., например, статьи Mars rover detects ‘excitingly huge’ methane spike и Curiosity's Mars Methane Mystery Continues) породили значительное количество споров о его источнике.
На Земле исследования метана, выделяющегося в ходе геологических процессов из трещин в породах земной коры, в районах подводных гидротермальных полей и щелочных источников, шли в основном в контексте его участия в биогеохимических циклах и влияния на климат. При этом детально механизмы абиогенной генерации метана до настоящего времени были исследованы довольно плохо.
Уже было известно, что метан может образовываться за счет реакции водорода, выделяющегося при серпентинизации пород океанического дна с CO2, но источник этого углерода был точно не известен. Недавнее исследование изотопных соотношений углерода, отобранных на подводном гидротермальном поле Фон Дамм (Von Damm vent field, см.: J. M. McDermott et al., 2015. Pathways for abiotic organic synthesis at submarine hydrothermal fields), установило, что водород, возникающий при химических реакциях во время циркуляции флюидов по трещинам пород, напрямую не приводит к образованию метана. Идея о том, что он может поступать из верхней мантии также является несостоятельной: она слишком окисленная для того, чтобы метан был стабилен, да и изотопные соотношения углерода показывают, что источником углерода для метана является морская вода (N. Grozeva, 2018. Carbon and mineral transformations in seafloor serpentinization systems). Требовался новый механизм, который, по некоторым предположениям, мог быть связан с возникающими в оливине флюидными включениями.
Этот механизм был обнаружен командой американских ученых во главе с Фридером Клейном (Frieder Klein) из Океанографического центра в Вудс Хоул (штат Массачусетс). Изучив включения в оливинах габбро и перидотитов, отобранных по всему миру (рис. 1), они нашли связь между метаном и водородом включений и другими минералами, также присутствующими в них. Детали процесса, примерные количества и влияние такого метана на глобальный планетарный баланс углерода были описаны ими в статье, вышедшей в недавнем выпуске журнала PNAS.
При анализе флюидных включений было замечено, что в гидротермальных системах основных пород (базальты, габбро) количество метана значительно меньше, чем в ультраосновных (перидотиты) — наблюдение, которое явно как-то было связано с самим неуловимым процессом. Для его установления была изучена коллекция микропрепаратов, состоящая из 43 образцов габбро и 117 образцов перидотитов. Флюидные включения были обнаружены во всех оливиновых габбро и в 77% перидотитов. В наиболее «богатых» образцах насчитывалось до 3×106 включений (размером от <100 нм до 30 мкм) на кубический сантиметр. В основном включения располагались цепочками и группами на месте залеченных трещин. Метан найден во включениях со всех точек отбора кроме трех, в которых был обнаружен только лишь водород 
Чтобы оценить количество метана в одном включении и в целом по породе, ученые определяли давление газа во включениях и их средний размер. Давление измерялось с помощью спектроскопии комбинационного рассеяния по сдвигу одного из пиков метана и в среднем составило 11,5 МПа. Это число позволяет рассчитать количество метана в одном модельном включении, которое принято за сферу диаметром 10 мкм: оно составляет от 8,4×10−5 до 1,2×10−2 нмоль. При плотности 105 включений на см3 это даст 2,5–363 нмоль CH4/см3, что сопоставимо с ранее опубликованными анализами содержания этого соединения в природных образцах перидотитов (2–37 нмоль/г) и габбро (72–310 нмоль/г) (N. Grozeva, 2018. Carbon and mineral transformations in seafloor serpentinization systems).
Подсчитав содержание метана в перидотитах и габбро, таким образом, можно подвести баланс для всей океанической литосферы Земли. Если допустить, что перидотиты слагают 5% океанического дна и что в 77% перидотитов оливин составляет 75 вес.%, то равномерный километровый слой перидотитов с концентрациями метана, эквивалентными анализам природных образцов, будет содержать 2,5–367 Тг (тераграмм, то есть 1012 грамм) метана. Аналогично, если положить, что габбро встречается на 50% площади океанической коры, содержит 72 нмоль/г метана и в среднем имеет толщину 4 км, то содержание метана во всех габбро океанического дна составит 4,8 Пг (петаграмм, то есть 1015 грамм). По подсчетам авторов статьи, суммарное количество CH4 в океанической литосфере значительно превышает доиндустриальное содержание метана в атмосфере Земли, которое оценивается в 2 Пг (C. MacFarling Meure et al., 2006. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP).
Для образования такого количества метана требуется эффективный и распространенный механизм, следы которого и были обнаружены во включениях (рис. 4). Кроме метана и водорода в них были найдены минералы группы серпентина, брусит и магнетит. Наиболее часто встречающаяся ассоциация серпентин-брусит-магнетит-метан-водород является прямым указанием на произошедший процесс серпентинизации при условиях близких к полностью закрытой системе. Ни в одном из включений не была обнаружена вода в виде отдельной фазы, однако, судя по итоговому набору минералов, она однозначно присутствовала при захвате включений и была израсходована в ходе реакций серпентинизации.
Чтобы восстановить процесс серпентинизации во всех деталях, необходимо выяснить температуры, при которых происходили разные этапы жизни включения. Оценка температуры захвата включений производилась, исходя из геодинамических и термодинамических принципов. Верхняя граница температурного окна захвата — 600–800°C. При этой температуре, которая меняется в зависимости от давления, пластичные деформации в кристаллах оливина сменяются на хрупкие, что дает возможность водному флюиду проникать по трещинам внутрь кристалла. В срединно-океанических хребтах такие температуры встречаются на глубинах от 2 до 8 км, что, вместе с циркуляцией морской воды по трещинам и раздвижением плит (рис. 6), создает условия для непрерывной генерации включений в каждой новообразованной порции океанической коры. В морской воде содержится и растворенный CO2, который также попадает во включения, — это источник углерода для будущего метана.
Реконструкция процесса взаимодействия оливина с морской водой при давлении 100 МПа и температурах от 600 до 25 градусов Цельсия происходила с использованием компьютерного термодинамического пакета EQ 3/6. Массовое соотношение «оливин:флюид» в модели составляло 5:1, а содержание растворенного в нем CO2 брали разным: 0,1, 1 и 10 ммоль/кг. Предыдущие эксперименты показывают, что оливин стабилен в присутствии водного флюида до ~400 градусов Цельсия — нижней границы формирования включений. А то, что было захвачено в интервале температур 800–400°C, при дальнейшем охлаждении начинает серпентинизироваться. Первая реакция — взаимодействие оливина с водой с образованием минералов группы серпентина:
3Mg2SiO4 + 2H2O + SiO2(aq) = 2Mg3Si2O5(OH)4.
Для успешного протекания этой реакции требуется наличие растворенного во флюиде кремния, но он обычно присутствует в гидротермальных растворах из-за их взаимодействия с породами, через которые они циркулируют. При дальнейшем охлаждении до 340°C начинает образовываться брусит:
2Mg2SiO4 + 3H2O = Mg3SiO4(OH)2 + Mg(OH)2.
Кроме магния в оливине также содержится железо. Частично оно входит в состав серпентина, но частично образует и свою фазу — минерал магнетит (Fe2+Fe3+2O4), при этом часть двухвалентного железа окисляется и выделяется водород:
2Fe2+O + H2O = Fe3+2O3 + H2.
Все эти три реакции идут до полного исчерпания H2O. По данным моделирования максимальное количество водорода и, соответственно, магнетита достигается к 300°C. Чем больше выделяется водорода, тем сильнее следующая реакция смещается в правую сторону — образуется метан:
CO2 + 4H2 = CH4 + 2H2O.

Устьянцев Валерий Николаевич:
Выделяющаяся вода расходуется на дальнейшую серпентинизацию и процесс продолжается до исчерпания реагирующих компонентов.

Судя по всему, описываемый процесс начался в архее одновременно с возникновением субдукции и спрединга (см.: Сульфидные включения в алмазах свидетельствуют о том, что субдукция началась еще в архее, «Элементы», 06.05.2019). При дальнейших преобразованиях породы при землетрясениях или метаморфизме образовывались новые трещины, вскрывающие включения, что приводило к выделению накопленного метана. Важно отметить, что в спокойных условиях включения могут сохраняться достаточно долго, и CH4 будет присутствовать, даже если от гидротермальной системы не осталось и следа, как, например, в офиолитах — фрагментах древней океанической коры, выдавленных на земную поверхность в ходе тектонических процессов. Так, образец из офиолита Жозефин (Josephine Ophiolite), изученный в обсуждаемой работе, сохранил включения с момента абдукции (наползания океанической коры на континентальную) в юрском периоде (A. Coulton et al., 1995. Oceanic versus emplacement age serpentinization in the Josephine ophiolite: Implications for the nature of the Moho at intermediate and slow spreading ridges). Возможно, именно такой метан, выделяющийся из включений в оливине, объясняет повышенные концентрации, наблюдаемые на Марсе: если на Марсе в настоящее время продолжается сейсмическая активность, что весьма вероятно (A.-C. Plesa et al., 2018. Present-day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics), то не требуется даже никаких дополнительных механизмов его высвобождения, а наблюдаемые пики концентраций являются маркерами марсотрясений.
Вообще, описанный процесс, который хорошо объясняет образование метана в океанической коре, возможно экстраполировать даже на ледяные тела, вроде Европы и Энцелада, где взаимодействие оливина их каменных ядер с водой, в ходе которого могут образовываться включения, возможна даже при 200 градусах Цельсия, если в оливине достаточно железа (F. Klein et al., 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks). Выделяющийся метан не только будет присутствовать в атмосферах космических тел, но и сможет поддерживать существование метанотрофных одноклеточных организмов, так что точку в споре о связи метана с наличием жизни на других планетах ставить еще рано.
Источник: Frieder Klein, Niya G. Grozeva, and Jeffrey S. Seewald. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions // PNAS. 2019. DOI: 10.1073/pnas.1907871116»
(Кирилл Власов).

Твердые парафины (алканы)
1 февраля 2011
Алканы   С10   и выше при нормальных условиях — твердые вещества, входящие в состав нефтяных парафинов и церезинов.Деление твердых углеводородов на парафины и церезины было сделано на основании различия кристаллической структуры этих углеводородов, их химических и физических свойств. При одинаковой температуре плавления церезины отличаются от парафинов большими молекулярными массами, вязкостью и плотностью. Церезины энергично взаимодействуют с дымящей серной и хлорсульфоновой кислотами, а парафины с этими реагентами взаимодействуют слабо. Для исследования состава парафинов и церезинов была использована реакция нитрования. Азотная кислота с азоалканами образует третичные нитросоединения, а с н-алканами — вторичные нитросоединения. Методом нитрования показано, что в нефтяных парафинах содержится 25—35 % изоалканов, а в церезине — значительно больше. Появились сведения о присутствии в твердых углеводородах нафтеновых структур. Действительно, выделенные из петролатумов углеводороды имели более высокие значения показателя преломления, вязкости и плотности, чем парафины с той же температурой плавления.Нефтяные парафины представляют собой смесь преимущественно алканов разной молекулярной массы, а основным компонентом церезинов являются нафтеновые углеводороды, содержащие в молекулах боковые цепи как нормального, так и изостроения с преобладанием последних. Соединения, содержащие в длинной цепи алканового типа ареновые ядра, входят в состав церезинов в меньших количествах. Их соотношение определяется природой нефти, из "которой выделен церезин.
Данные о содержании парафинов в нефтях приведены в табл. 7.12.
Плотность парафинов в твердом состоянии лежит в пределах от 865,0 до 940,0 в расплавленном — от 777,0 до 790,0 кг/м3. Растворимость парафина в органических веществах невелика, за исключением сероуглерода, в котором растворяется 12 ч. парафина на 100 ч. В легком бензине растворяется 11,7 ч. на 100 ч.Температуры плавления индивидуальных компонентов парафина тем выше, чем больше их молекулярная масса. Самый низкоплавкий углеводород парафина — гексадекан (^пл 18°С). Природный парафин из нефти представляет собой смесь нескольких углеводородов и поэтому не имеет четкой температуры плавления.Установлено содержание н-алканов во фракции 350—540°С западносибирской нефти. Суммарное массовое содержание н-алканов С18 — С4о составило 4,3%  на фракцию.Наряду с н-алканами во фракциях с температурой кипения выше 300°С методом ГЖХ количественно определены 2- и 3-метилалканы, присутствующие среди однотипных изомеров в наиболее высоких концентрациях.В ряде нефтей Восточной Сибири найдена группа монометилзамещенных алканов—12-метилалканы С14 — С30 и 13-метилалканы С26 — С30. Концентрации углеводородов обеих серий равны. Их содержание в нефтях варьирует от 10 до 90 % от содержание н-алканов. Высокое содержание и особенности концентрационного распределения привели Ал. А. Петрова к мысли, что генезис этих углеводородов объясняется наличием в исходном нефтематеринском веществе циклопропанкарбоновой кислоты С25 (12,13-метилентетракозановой). Фактическая концентрация указанного реликта в других нефтях на порядок ниже, чем в нефтях Восточной Сибири.Твердые парафины вырабатываются обезмасливанием избирательными растворителями гачей, получаемых при производстве масел или парафиновых дистиллятов из парафинистых и высокопарафинистых нефтей. Парафин-сырец указанных марок (Bi — В4) характеризуется следующими показателями: содержание масла 1—2% температура плавления 52—55СС, температура  вспышки  в  закрытом  тигле  220 С.   Парафин-сырец подвергается   дополнительной   очистке   на установках  адсорбционной очистки или гидроочистки.Если обычный технический парафин, содержащий от 20 до 35 углеродных атомов преимущественно нормального строения, имеет температуру плавления, не превышающую 50—55°С, то температуры плавления разветвленных алканов той же молекулярной массы более низки. Молекулярные массы парафинов лежат в пределах от 300 до 450, а церезинов — от 500 до 750, что соответствует содержанию в цепи примерно от 36 до 55 углеродных атомов.Церезины встречаются в природе в виде твердых углеводородов некоторых нафтеновых нефтей. Примесь церезина в парафинах практически невозможно выделить.Церезин, выделенный из деасфальтированного концентрата туймазинской нефти, состоит в основном из циклоалканов и аренов с длинными алкильными цепями, образующих комплекс с карбамидом, а также с разветвленными цепями, не дающих комплекса. Циклоалканы этой нефти содержат в среднем два-три кольца в молекуле, а арены — от одного до трех колец.Имеющиеся данные о химическом составе церезина недостаточны. Некоторые авторы считают, что церезины состоят преимущественно из высокомолекулярных н-алканов. Однако в ряде работ утверждается, что церезины представляют собой циклоалканы с длинными боковыми цепями. Кроме того, они содержат разветвленные алканы, незначительные количества н-алканов и очень мало алканоаренов. В частности, твердые углеводороды петролатума карачухуросураханской нефти состоят в основном из циклоалканов, содержащих в молекуле до трех колец. С повышением температурных пределов перегонки фракций пертолатума уменьшается содержание циклоалканов с неразветвленной боковой цепью и увеличивается число колец, приходящихся на одну молекулу.Отличительный признак церезинов — мелкокристаллическая структура. Церезины состоят из более мелких кристаллов, чем парафин.Физические свойства церезинов во многом сходны со свойствами нормальных углеводородов. Показатель преломления для церезинов значительно выше, чем для парафинов.В химическом отношении церезины отличаются меньшей стойкостью, чем парафины.Из нефтей, содержащих церезин, они выделяются при продолжительном стоянии в виде черных осадков, включающих еще минеральные примеси и смолистые вещества. Нефтяные воски содержат 10—50 % нормальных алканов и до 40—90 % аренов, циклоалканов и разветвленных алканов.Таким образом, нефтяные парафины представляют собой смесь преимущественно н-алканов разной молекулярной массы, а основным компонентом церезинов являются нафтеновые углеводороды, содержащие в молекулах боковые цепи как нормального, так и изостроения с преобладанием последних. Твердые парафиновые и ароматические углеводороды входят в состав церезинов в меньших количествах, причем их соотношение определяется природой нефти, из которой выделен церезин.

Устьянцев Валерий Николаевич:
«30. 03. 2009.
Испанские и французские астрофизики определили полосу в инфракрасном диапазоне, которая служит для отслеживания присутствия органических веществ, богатых кислородом и азотом в частицах межзвёздной пыли. Если какой-либо телескоп зафиксирует такую полосу, может подтвердиться присутствие в космосе аминокислот и других веществ, которые являются предшественниками жизни.
Гуиллермо Муноз, исследователь из Центра астробиологии Национального института аэрокосмической техники (ИНТА), утверждает: “Нам удалось доказать в лабораторных условиях, что органический материал, содержащий пребиотиеское вещество, известный как жёлтое вещество, обладает очень характерной полосой поглощения, которую можно искать в тех областях космоса, в которых присутствуют пылевые частицы, в попытке обнаружить подобные субстанции”.
Учёный объясняет, что пылевые частицы, которые часто наблюдаются в межзвёздных облаках и вокруг молодых звёзд, обычно “окружены крошечными оболочками льда, богатыми водой и другими простыми молекулами, такими как оксид углерода (CO), метанол (CH3OH) или аммиак (NH3), на которые падает свет и космические лучи”.
Муноз и его французский коллега Эммануэл Дартуа из Института космической астрофизики в Париже, воссоздали эти межзвёздные условия в лаборатории, смешав различные газы при очень низком давлении и температуре (-263ºC), а затем подвергли межзвёздный лёд воздействию излучения, которое формируется с помощью ультрафиолетового света. В результате образовалось жёлтое вещество, желтоватая субстанция, богатая углеродом, так же вместе с водородом, азотом и множеством кислородных соединений.
Это вещество состоит из большого числа органических молекул, таких как карбоновые кислоты, глицин и другие аминокислоты.
Полоса поглощения жёлтого вещества расположена в пределах 3.4 микрометров в средней инфракрасной области спектра, а когда она отображается на графике, её контур имеет две характерные вершины.
Это позволяет определить данную полосу в областях формирования планет, похожих на нашу солнечную туманность и объекты Солнечной Системы, считает Муноз. Более того, по его словам, синтез органических составляющих через облучение может указывать на присутствие этих веществ в кометах, таких как комета Галлея, и может объяснить изотопный состав углеродистого материала, который был обнаружен в межзвёздной пыли и типах метеоритов, богатых углеродом, известных как углеродистые хондриты.  До сих пор учёные не наблюдали инфракрасную полосу жёлтого вещества в межзвёздном пространстве, то же относится и к Солнечной Системе, но они утверждают, что причиной этому может быть ограниченность технического оборудования.
Что касается углеродистых хондритов и межзвёздной пыли, оба содержат углерод, который связан с изотопами тяжёлого водорода (прежде всего дейтерий 2H) и азотом (15N), характерными для химических реакций при очень низких температурах, таких как те, которые происходят при облучении льда, но тип метеоритного углерода отличается от жёлтого вещества.
Пребиотические вещества, которые образуются при облучении льда, теряют свои органические свойства и высокое содержание водорода, азота и кислорода, при нагревании более чем до 300 ºC; это происходит вблизи Солнца.
Космический модуль Розетта, принадлежащий Европейскому Космическому Агентству, попытается определить аминокислоты и другие молекулы, относящиеся к добиологическим, в ядре кометы 67P. Чурюмов-Герасименко, когда достигнет её в 2014» (infuture.ru).

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Перейти к полной версии