Теории образования Земли, глубинное строение ее внутренних оболочек и другие вопросы мироздания > О волновой природе напряжений и деформаций и механизме концентрации пи в земной коре

О волновой природе напряжений и деформаций и механизме концентрации пи

<< < (71/79) > >>

Устьянцев Валерий Николаевич:
Технический анализ сапропеля
Влажность (Wd) – 3,7 [масс. % на воздушно-сухой сапропель]; зольность (АС) – 70,5; содержание органического вещества – 25,8 [масс. % на воздушно-сухой сапропель], элементный состав (масс. % daf): С 54,4; Н 7,0; N 3,9; O + S 34,7; H/C(am) = 1,544, степень окисленности (CО) = –0,587.
Эмиссионным спектральным, рентгено-флуоресцентным и атомно-абсорбционным анализами в составе минеральной части обнаружены: Al, Si, Ni, Mg, Sr, Na, K, Be, Co, Mo, Ag, Cr, Ti, V, W, Pt, Pb, Cu, Au, Nd, Ce, Ge, Ga.
Согласно данным рентгенофазового анализа основу минералогического состава минеральной части сапропеля составляют каолинит, галлуазит, кремнезем, оксид Fe (III), оксид Ti (IV); СаО Al2O3×2SiO2.
2. Химический групповой состав органического вещества (ОВ) сапропеля
Водорастворимые вещества (ВРВ) – 0,3; битумы (Б) – 3,3; легкогидролизуемые вещества (ЛГВ) – 3,0; уроновые кислоты (УК) – 1,6; фульвокислоты и гуминовые кислоты (ФК, ГК) – 0,6 и 12,5, соответственно, целлюлоза (Ц) – 1,0; негидролизуемый остаток (НГО) – 3,5 (масс. % ОВС).
2.1. Качественный и количественный состав ФК
Препаративной тонкослойной хроматографией (ТСХ) со свидетелями в составе ФК были качественно идентифицированы аминокислота, сахара и водорастворимые карбоновые кислоты и количественно определено их содержание.
2.1.1. Химический состав аминокислот (мг/кг сапропеля)
L-a-аланин (0,12), лейцин (48,08), фенилаланин (16,55), валин (15,58), глицин (0,15), аспарагин (5,05), лизин (6,09), гистидин (10,11), аспарагиновая кислота (15,56), тирозин (12,01), цистеин (10,06), триптофин (0,52), глутамин (0,73), серин (0,14), изолейцин (0,10), глутаминовая кислота (63,60), треонин (47,59). Сумма аминокислот – 257,05 мг/кг сапропеля.
2.1.2. Химический состав сахаров (мг/кг сапропеля)
Арабиноза (10,04), Д-галактоза (100,55), Д-глюкоза (57,60), L-рамноза (22,04), лактоза (3,56), мальтоза (15,08), раффиноза (0,15). Сумма сахаров – 209,02 (мг/кг сапропеля).
2.1.3. Химический состав водорастворимых карбоновых кислот (мг/кг сапропеля)
Щавелевая (42,56), янтарная (30,01), адипиновая (1,09), пимелиновая (2,56), винная (0,15), яблочная (1,57), салициловая (10,54), о-фталевая (0,13), галловая (0,54), феруловая (0,57), ванилиновая (0,19), сиреневая (0,11), терефталевая (0,14), бензойная (0,11), малоновая (4,08), метилянтарная (8,91).
Сумма водорастворимых карбоновых кислот – 103,26 (мг/кг сапропеля).
3. Химический состав ГК
Выход ГК – 12,5 (масс. % ОМС); зольность (АС) – 8,9; влажность (Wd) – 10,0; содержание органического вещества – 81,1 (масс. % от воздушно-сухого сапропеля).
Элементный (масс. % daf): С 67,1; Н 7,1; N 6,3; O + S 19,5; функциональный состав (мг-экв/г): фенольные (ФГ) – 11,5; хиноидные (ХГ) – 8,43; карбоксильные (КрГ) – 4,2, кетонные группы (КГ) – 0,75, йодное число (ИЧ) – 1,87.
Молекулярная масса – 1548,6; H/C(am) = 1,270; СО = –0,834; молекулярная гипотетическая формула С86,62Н109,97N6,97O + S18,87.
В ИК-Фурье спектре ГК были идентифицированы полосы поглощения (п.п) следующих структурных фрагментов (n, см-1):
– слабой интенсивности п.п. СН-, СН2-, СН3-групп алканов и циклоалканов (2952,7, 2923,8, 2854,4, 1421,3, 1378,9, 1226,5, 772,2); присутствие циклоалканов подтверждается совокупностью п.п. (3389–3337, 3350, 2953, 2855, 1421, 1454, 1379, 721, 758, 772); крайне слабая интенсивность п.п. (721) указывает на низкое содержание алканов (СН2)n при n > 4, а п.п. (1379) – СН3-группы в основном связаны с ароматическими фрагментами;
– интенсивные п.п. ароматических циклов (1600/1500, 1514, 1541, 1558, 3096, 3080, 3063, 3045, 3011), а также серия п.п. в областях (900–650 и 1200–900); интенсивность п.п. (1514) меньше, чем (1636), следовательно, в составе ГК велика доля конденсированных ароматических колец; которые в основном монозамещенные (1600, 1558, 1514, 698, 758);
– ОН-группы фенолов и спиртов (3427, 3389, 3366, 3351, 3296, 1410–1310, 1379, 1226, 721), в т.ч.: тритерпеновых и стероидных спиртов (1653, 1636, 1300–1150, 1124, 1034, 1080, 1170–950, 758, 771, 799); кетонов (1720, 1690, 1653, 1080, 1124), в т.ч.: дикетонов (1636–1541), арилалкилкетонов (1227–1080), диарилкетонов (1690–1653), кетонов, совмещенных с ненасыщенными связями (–С–СО–С = СОR) – (1635–1541, 1635); хинонов; перихинонов (1635) – две группы –СО в одном цикле; две группы –СО в разных циклах (1653–1635); карбоновые кислоты (2694, 2924, 3590–3495, 2855, 1720, 1690, 1379–1227, 1170–1080), в т.ч.: кислоты с внутренней водородной связью (1680–1653); сложные эфиры, лактоны (1790, 1740, 1180, 1080); кумарины и изокумарины (1740–1720, 1636, 1653, 1541, 1514, 1558); полисахариды (1080, 1034, 459, 428); амид I (1690–1636) и амид II (1590–1514).
– деформационные колебания N-H групп первичных (1620–1590) и вторичных (1558–1514) амидов; ангидриды кислот (1850–1800, 1790–1740); асимметричные деформационные колебания NH-группы NH3 (1653), и асимметричные валентные колебания группы (C–O)2 – карбоксилат-иона (1558), симметричные валентные колебания карбоксилат-иона (1421);
– тиофеновых (3096, 3080, 3063, 1541–1034), фурановых (3198, 3177, 3152, 3134, 3107, 1580–1500), пиррольных пиперидиновых и пуриновых циклов (3495, 3427–3389, 3011–3080, 1580–1514, 1000–960, 820); пиррольных циклов в составе порфиринов, хлорофиллов (3495, 3152, 3045, 3011, 1580, 1034, 772–698); алифатических аминов (3500–3366, 1653–1500, 1360–1000); сульфидов (636–623) и дисульфидов (459, 428, 405); тиокетонов (1034–1227, 1080, 1034).
4. Химический состав гиматомелановых кислот
Гиматомелановые кислоты (ГМК) – одна из важнейших составляющих ГК – в значительной степени определяют биологическую активность последних.
ГМК выделяли кипячением ГК в 95 %-м C2H5OH, в котором они хорошо растворяются. Этанольный раствор отделялся фильтрованием, C2H5OH отгонялся, а ГМК сушились в вакуумном шкафу до постоянной массы.
Выход ГМК составил 40 (масс. % от ГК); значение средней молекулярной массы 903 а.е.м.; элементный состав (масс. % daf): С 70,9; H 9,3; N 2,9; O + S 16,9; Н/С(am) = 1,574; СО = –1,217; гипотетическая молекулярная формула С53,35H83,99N1,87O + S9,54.
В ИК-Фурье спектре ГМК были идентифицированы п.п. следующих структурных фрагментов (n, см–1):
– интенсивные п.п. в областях (1600–1300, 900–650) указывают на высокое содержание в ГМК ароматических и гетероциклических соединений (3082–3034, 1600–1500, 1550–1500, 1500–1448, 1175–1123, 1100–1072, 770–730, 744–704), замещенных длинными алкильными цепями (3065–3034, 1500–1446, 910–648), включающими двойные связи (3045, 1650, 1601, 975, 862, 820);
– интенсивные п.п. СН–, СН2–, СН3–групп алкановых и циклоалкановых структур (2980, 2939, 2920, 2868, 1446, 1369, 1394, 1286, 960, 704, 444); наличие циклоалканов подтверждается совокупностью п.п. (3410–3342, 2953, 2939, 2920, 2868, 2849, 1446, 1394, 1369, 704), включающие длинные алкильные цепи (3065–3034, 1500–1446, 1549–1446, 910–648) с двойными связями (3045, 1650, 1601, 975, 867, 820);
– ОН-группы фенолов и спиртов (3574, 3410, 3410–3198, 3292, 1420–1330, 1369, 1330, 1220, 1215, 660-635) в т.ч.: спиртов тритерпеноидного и стероидного типа (1300–1150, 1150–950), стерины (3034, 1670, 960, 862, 840, 800), в частности п.п. (3437–3410, 1072, 970, 862, 820, 805);
– b-ситостерин; кетоны (1728, 1710, 1700, 1690), в т.ч.: ненасыщенные (1675) и a-гидроксикетоны (1740–1720, 1650–1620, 1570–1549); хиноны (1675, 1645) или кетонные группы, сопряженные с двойной связью; карбоновые кислоты (3000–2500, 1760, 1710, 1420, 1300–1200); метиловые эфиры a,b-ненасыщенных (1300–1160) и ароматических кислот (1310–1250), лактоны (1250–1110), жирных длинноцепных алифатических кислот (1250, 1205, 1175);
– пиридиновые, хинолиновые, изохинолиновые (3065–3010, 1650–1580, 1510–1480, 1200, 1100–1000, 900–670, 704), пиримидиновые (3065–3010, 1580–1520, 1000–960, 862–825, 744); сопряженные пиррольные гетероциклы порфиринов, хлорофилла (3526, 3485, 3155, 3148, 3055, 1585, 1039, 750–690), фурановые (3165–3125, 1549, 1500, 1039, 800–740) и тиофеновые циклы (3128–3051, 1520, 1039, 750–690, 862), сульфиды (705–560, 650–610) и дисульфиды (465, 420), амины (3506–3292, 3410–3100, 1650–1549, 1340–1250, 1370–1288, 1230–1018), амиды (3360–3323, 3221–3190, 1680–1620, 1570–1515, 770–610, 630–525).
Согласно УФ/ВИС-спектру в ГМК присутствуют (НМ): бензольные и нафталиновые кольца (200, 220, 260, 275, 310); производные флавонолов (245, 250, 270) и кумаринов (265, 285, 320); ненасыщенные карбоновые кислоты (220), сложные эфиры и лактоны (200, 240, 225), непредельные и предельные кетоны (270, 470), хромоны (625); сопряженные пиррольные циклы хлорофилла и порфиринов (450, 510, 545), индолы, витамин «К» (270), стероидные соединения типа холестадиена и эргостена (280, 290, 320), эргостерина (260, 270, 285, 295), супрастерина (250), тахистерина (268, 280, 295); p-комплексы металлов с фенольными и хиноидными группами (450); пигменты пурпурных бактерий (420, 535), антоцианы (480, 500), каротиноиды, производные витамина «А», дикетоны (415, 450, 470, 480), пиррольные пигменты, сопряженные хиноны (435, 520, 600, 620), гиперицин (660), бактериохлорофилл «а» (365, 400, 475, 610).
Сравнение структурных характеристик ГК и ГМК показывает, что последние имеют почти в 1,5 раза меньше значение молекулярной массы, больше содержание алифатических, алициклических и гидроароматических структур, карбоксильных и сложноэфирных групп.
5. Биологическое тестирование сапропелевых препаратов
5.1. Биологическое тестирование исходного сапропеля
Для изучения биологической активности сапропеля были взяты контрольная и опытная группы морских свинок (самцов в возрасте 1,5 мес.) по 10 особей в группе, а также белых мышей (самцов в возрасте 1 мес.) по 20 особей в группе. Все животные получали хозяйственный рацион: зерно (морские свинки – 20 г/сутки, белые мыши – 11 г); морковь (120 и 3), свекла (120 и 3), г/сутки на одно животное. С целью установления влияния сапропеля на физиологию животных и характер их поведения в опытных группах его скармливали в неограниченном количестве вместе с основным кормом.
Отмечено, что подкормка сапропелем оказала положительное влияние на рост животных. В контрольной группе живая масса морских свинок за 90 дней увеличилась на 19,3–21,9 %, а в опытной на 26,3–44,3 %. В контрольной группе белых мышей за 90 дней живая масса возросла на 11,6–15,4 %, а в опытной – на 10,5–15,0 %.
Однако в контрольной группе белых мышей из-за несбалансированного питания, а именно недостатка микроэлементов, жиров и протеина было загрызено и съедено 50 % особей. В течение эксперимента в данной группе животные вели себя неспокойно и агрессивно, постоянно нападая друг на друга.
Незначительные различия в изменении живой массы контрольных и опытных белых мышей, по-видимому, можно объяснить использованием контрольными особями животного сырья.
Морские свинки и белые мыши в опытных группах в течение всего времени (90 суток) чувствовали себя хорошо, были спокойными и поедали сапропель с большой охотой. Кишечных расстройств не наблюдалось. Улучшилось качество шерсти.
Морфобиохимическое исследование крови позволило сделать вывод о нормальном состоянии здоровья животных. В целом различия между группами по гематологическим показателям были незначительными и находились в пределах физиологических норм. В опытных группах животных отмечалось несущественное увеличение лейкоцитов.
После 3-дневного восстановительного периода контрольные и опытные животные были заражены анаэробной токсигенной культурой Clostridium perfringens.
Контрольные группы животных погибли на 2-й день после заражения, а опытные на 4-й день.
5.2. Биологическое тестирование сапропелевых препаратов (ФК, ГК и ГМК)
Были изучены ФК, ГК и ГМК, которые в различных концентрациях вводились в состав питательных сред для выращивания различных групп микроорганизмов: E.coli, St.aureus, гриб Candida, С.diphterie, для роста последних требуется среда с высоким содержанием аминного азота, глюкозы, нативного белка, что достигается введением в состав среды крови, сыворотки животных.
Установлено, что наибольшей биологической активностью обладают ГК, выделенные из исходного и декальцинированного сапропеля. Наблюдается обильный рост нетребовательных микроорганизмов, таких как E.coli и St.aureus; также отмечается умеренных рост, по сравнению с контролем, высокотребовательных Candida и С. diphterie, в то время как в отсутствии ГК рост микроорганизмов на агаре отсутствует.
ФК вызывают угнетение роста микроорганизмов; чем больше концентрация ФК, тем заметнее эффект угнетения, вплоть до отсутствия роста микроорганизмов.
Для ГМК, в пределах изученных доз, отмечается высокий эффект размножения клеток микроорганизмов. Таким образом, результаты изучения биологической активности ГК, ФК и ГМК могут быть успешно использованы в конструировании питательных сред для диагностики инфекционных заболеваний, а исходный сапропель – в качестве эффективной кормовой добавки.
Усвоение питательных веществ корма, их превращение в организме животных в энергетический и строительный материал определяется активностью ферментов, гормонов и других биологически активных веществ, содержащихся в сапропеле и различных препаратах на его основе. Их роль особенно возрастает в стрессовых ситуациях. Высокой биологической активностью обладают также ГК торфа, стимулирующие процесс брожения дрожжей, активность ферментов; влияют на окислительно-восстановительные процессы, что объясняется наличием в ГК торфа полифенолов, оксихинонов, хинонов, выполняющих роль переносчиков водорода и активаторов кислорода, а это стабилизирует внутриклеточное дыхание; активирует синтез белка и нуклеиновых кислот. Высокая биологическая активность препаратов на основе торфа месторождения «Мещера» типа «ЭДАГУМ*СМ» была подтверждена РАСХН ГНУ Ставропольским научно-исследовательским институтом животноводства и кормопроизводства (ГНУ СНИИЖК). Отмечено повышение урожайности кормовых и пастбищных трав, а также кормовых бобовых культур на 1,0–2,4 ц/га; сокращение укосного периода на 3–8 дней. Корма имеют более высокое качество, а именно более высокое содержание протеина, жира, БЭР, витаминов, аминокислот в более доступной форме.
Использование «ЭДАГУМ*СМ» в качестве кормовой добавки для сукозных и суягных маток, ремонтных козочек позволило установить его положительное влияние на усвояемость питательных веществ. Среднесуточный привес сукозных и суягных маток составил 16,85 %; молочность 1,16–1,18 кг (1,14 – контроль); настриг шерсти увеличился на 4,25 %; плодовитость – на 18 %. Улучшились гематологические и биохимические показатели крови – гемоглобин на 4,69 %; сократился расход кормов на 17,73 % за счет более эффективного переваривания сухого корма. Среднесуточный привес ремонтных козочек составил 18,75 % (контроль – 10,94 %); молочная продуктивность – на 9,32 %.
Выводы
1. Комплексом современных физико-химических методов анализа впервые выполнено исследование вещественного состава сапропеля озера Лебяжье (Республика Татарстан) с получением подробной характеристики химического группового органического вещества сапропеля, качественного и количественного состава водорастворимых соединений, гуминовых, гиматомелановых и фульвокислот.
2. В составе органического вещества сапропеля идентифицированы аминокислоты, сахара, карбоновые кислоты, кетоны, спирты, производные фенола, нафтолов, хлорофилла, каротиноиды, хиноны, металлопорфирины, стерины. Большинство соединений имеют тесную генетическую связь с исходным биоматериалом, участвовавшим в сапропелеобразовании; проявляют высокую биологическую активность.
3. Выполнено биотестирование сапропеля и различных препаратов на его основе с привлечением большого набора микроорганизмов, а также морских свинок и белых мышей. Гуминовые препараты проявляют антибиотическую активность по отношению к E.coli, St.aureus, C.diphterie и грибам Candida, причем специфичность биологического действия коррелируется с химическим составом препаратов».
Библиографическая ссылка
Платонов В.В., Хадарцев А.А., Чуносов С.Н., Фридзон К.Я. БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ САПРОПЕЛЯ // Фундаментальные исследования. – 2014. – № 9-11. – С. 2474-2480;
URL: https://fundamental-research.ru/ru/article/view?id=35383 (дата обращения: 23.01.2024).

Устьянцев Валерий Николаевич:
Углерод.

«Углерод (Carboneum, от лат. назв. угля) С — элемент IV группы 2-го периода периодической системы Д. И. Менделеева, п. н. — 6, атомная масса 12,01115. Состоит из смеси двух стабильных изотопов 12С (98,9%) и 13С (1,1%). По решению Международного съезда химиков (1961 г.) 1/12 массы изотопа  12С принята за единицу атомной массы. Углерод существует в виде нескольких аллотропных форм (алмаз, графит). В соединениях Углерод проявляет валентность 4+, реже 2+ и 3+. При обычных условиях химически мало активен, однако при нагревании проявляет высокую реакционную способность (особенно аморфный Углерод). Соединения Углерода составляют главную часть всех органических веществ и продуктов их разложения. Химия соединений Углерода выделена в отдельную область — органическую химию».
Изотопы углерода.
Вариации в соотношениях стабильных изотопов углерода в природных образованиях достигают 12%. Изменения изотопного состава углерода используются в геологии для решения вопросов, касающихся источника рудообразующих растворов и генезиса минералов горных пород и руд.
Исследования изотопного состава С дают важные сведения для изучения генезиса м-ний нефти, газа, самородной S, для разработки геохимических методов поисков этих месторождений, для реконструкции условий осадконакопления в древних бассейнах и др.
Данные по изотопному анализу углерода позволили обосновать предположение о глубинном происхождении алмазов и карбонатитов, о наличии графитов, образовавшихся из органического вещества и из карбонатов, об органическом происхождении некоторых урановых минералов и др.
Разделение изотопов углерода в природных условиях вызывается изотопно-обменными реакциями, приводящими к преимущественному накоплению тяжелого изотопа  13С в карбонатах, и биологическими процессами, в том числе фотосинтезом, в результате которых легким изотопом 12С обогащается органическое вещество растительного и животного происхождения.
Изотопный состав углерода морских осадков и карбонатных осадочных пород. изменяется в пределах δ 13С от + 0,5 до — 0,3%;
- в алмазах, карбонатитах, ювенильной углекислоте — от — 0,32 до —0,94% ;
- в органическом веществе морских и пресноводных отлчаются, угле и нефти — от —2,3 до —3,2%.
δ 13С показывает разницу в изотопном составе образца и стандарта.
Знак “минус” указывает на то, что образец содер. меньше 13С, чем стандарт, что он легче стандарта, знак “плюс”—тяжелее стандарта.
За стандарт принят изотопный состав углерода из мелового белемнита с отношением (12С/13С) равным 88,89». (М. Н. Голубкина). 
Ометим, что: «Сланцевой нефтью (керогеновой) называют нетрадиционный вид нефти, которую получают из горючих сланцев в результате пиролиза, гидрирования или термического растворения, при которых твердые остатки органической материи из сланцев преобразуются в синтетические углеводороды (нефть и газ)» (википедия).

«Кероген – это твердое полимерное органическое вещество, нерастворимое в органиче-ских растворителях, которое является наиболее важным элементом нефтематеринских пород. К нефтематеринским породам относят породы сложного полиминерального состава, характе-ризующиеся высоким содержанием органического вещества в виде керогена, битумоида и нефти, например, нефтеносные сланцы.
Будучи смесью органических материалов, кероген не может быть описан химической формулой. В частности, его химический состав может меняться от образца к образцу. Кероген из месторождения Грин Ривер с востока Северной Америки содержит элементы в пропорции: углерод — 215, водород — 330, кислород — 12, азот — 5, сера — 1» (Википедия).
«Порфин (от греч. πορφύρα — пурпур) — органическое вещество, природный пигмент, ароматический макроцикл.
Это темно-красные кристаллы, которые плохо растворяются в органических растворителях, но растворяются в кислотах и не растворяются в щелочах.
Формула порфина была предложена Ф. Кюстером в 1913 году. Он предположил, что порфин состоит из четырёх пиррольных колец, соединённых метиновыми мостиками в макроцикл.
Синтез ряда важнейших порфиринов, в частности гемина, был осуществлён во второй половине 1920-х годов Хансом Фишером, а синтез самого порфина — в 1935 году им же» (википедия).

Устьянцев Валерий Николаевич:
Отметим следующее:
С.П. Максимов, 1977, показал связь тектонических циклов и процессом накопления нефти и газа - тектоническая цикличность оказывает влияние на миграцию УВ. Тектоническая обстановка является фактором контролирующим пути направления и скорость миграции УВ.
Под воздействием волн энергии продольного (волны сжатия-растяжения), поперечного типа (волны сдвигового характера), происходит процесс объемного расширения тектоносферы, как по радиали, так и по латерали.
Процесс рудообразования, это всегда процесс дифференциации вещества, который приводит к возникновению зональности. Важно отметить, что временной диапазон действия данного механизма: от архея до квартера.
Выделяются горообразовательные геохимические эпохи формирования и локализации минерального сырья и разделяющие их равнинообразовательные эпохи.
«От эпипалеозойской плиты, к области до платформенной активизации, увеличивается общий потенциал нефтеносности недр. В зоне сочленения эпипалеозойских, более древних плит, основной потенциал нефтегазоносности, связывается с основанием осадочного чехла, в области корового ослабленного горизонта.
Основной потенциал газоносности, связывается с процессами, происходящими в литосфере и верхней мантии» В.И. Попов].
Срединные массивы области плит и платформ - маркируют зоны генерации нефти и газа…  Срединные массивы области подвижных поясов - маркируют зоны дегазации, в связи с тем, что они не перекрыты осадочным чехлом, в котором происходит локализация минерального сырья. Недооценена роль роль погребенных структур Байкальского цикла тектогенеза - СЗ простирание - рифей. В ту эпоху формировалась осадочная формация - серия "Блайна", в которой аккумулировалось минеральное сырье - Копет-Даг, С. Кавказ, З. Сибирь, Тиман.
Исследования Х. Герстенберга, К. Венцеля показали, что «геохимия изотопов дочерних элементов долгоживущих естественных радионуклидов и особенно геохимия изотопов Nb и Sr, как и исследование изотопного состава кислорода в земной коре, позволили получить существенные результаты по динамике и механизму обмена веществом между корой и мантией, а также по общему развитию земной коры. Полученные ими результаты позволяют заключить, что:
1. огромные материковые ядра возникли до рубежа 3,0 млр. лет назад;
2. рост континентов на продолжении всей истории Земли связан с последовательностью более или менее глобальных событий, сопровождавшихся высокой магматической активностью, которая была обусловлена поднятием магмы из верхней мантии;
3. в течении процесса дифференциации, в отдельных областях мантии, произошло обеднение литофильными ( в частности - рифтовые зоны)» [15].

В.А. Ермаков отмечает, что «земная кора магматического происхождения, сформированная к середине протерозоя, - наглядное свидетельство огромной потери тепла, легколетучих и легкоплавких компонентов протомантии. К концу периода (4,4 — 1,6 млр. лет) было образовано 85-95% континентальной коры. Наиболее древние офиолиты имеют возраст менее 2,8 млр.лет. Образование древнейших пород коры (протосиаль - серые гнейсы) произошло в первые 500 млн. лет».Исследования В.А. Ермакова показали, что «древние породы земной коры образовались в первые 500 млн лет (геохронологические и геохимические результаты цирконометрии) и породы протосиаля близки по составу серым гнейсам. Наиболее древние офиолиты имеют возраст менее 2,7 млрд. лет».
О.А. Богатиков отмечает, что «в кислых породах имеются первичные до метаморфические цирконы, в то время, как породы основного состава содержат только метаморфические цирконы (1985)».
В протерозое (2,5-1,9 млр. лет) происходят процессы деформации коры, сопровождающиеся внутрикоровым и мантийным магматизмом и высокотемпературным метаморфизмом. К середине протерозоя сформировалась кора магматического происхождения (В.А. Ермаков).   
Метапороды основного и ультраосновного состава имеют возраст архей - протерозой. Первые офиолиты имеют возраст менее 2,7 млр. лет.
Фиксируется повсеместное налегание пород зеленоакаменых поясов на комплексы сиалической коры.
«В архее скорость осевого вращения была менее 10 часов» (М.З. Глуховский, В.Н. Жарков, Ю.Н. Авсюк), «...в связи с чем в экваториальных широтах (±35º), под воздействием центробежных сил в режиме мантийных плюмов, происходило зарождение коры сиалического состава [М.З. Глуховский], а также формирование зеленокаменных поясов первого поколения - Барбертон и Пилбара (3,4-3,2 млр. лет)» [Kolger, 2006] [5].
Зеленокаменные пояса второго поколения (3-2,7 млр. лет) формировались в режиме быстрого осевого вращения.
Многие исследователи [В.В. Белоусов, Н.Л. Боуэн, Г.С. Горшков, Б. Гутенберг, Н.Л. Добрецов, В.С. Соболев, В.А. Магницкий и др.] считают, что, базальтоидный магматизм имеет «сквозькоровый» характер, полагая, что магмогенерирующие очаги располагаются в пределах волновода. Это подтверждается ультраосновными и эклогитовыми включениями («вестников» больших глубин) и связью регионов базальтопроявлений с очагами землетрясений.


- Элементный состав нефти: С 82,5-87%; Н 11,5-14,5%; О 0,05-0,35, редко до 0,7%; S 0,001-5,5%, редко свыше 8%; N 0,02-1,8%. Около 1/3 всей добываемой в мире нефти содержит свыше 1% S.
Средняя величина Corg в стратиграфическом разрезе (нефть+газ) мира):  Corg=5%, проанализированы n=50 свит от палеопротерозоя до квартера.
Т.о.: 87 — 5 = 82% С, -  абиогенного углерода
Углеводороды комплементарны друг другу.
По В.И. Вернадскому 1934 год: содержание углерода в углеводородах С = 83-87%;
- водорода Н = 11-14%.
Насыщение нефти кислородом атмосферы: содержание кислорода до 6%.

2021 год:
- элементный состав нефти: С 82,5-87%; Н 11,5-14,5%;
Насыщение нефти кислородом атмосферы: О 0,05-0,35.

Устьянцев Валерий Николаевич:
Азотсодержащие соединения в нефти (по данным для 500 нефтей) содержатся в пределах от 0,02-0,40 % (масс.), хотя в некоторых может достигать 0,8-1,5 и даже 10-12%.
Все азотсодержащие соединения нефти являются, как правило, функциональными производными аренов, в связи с чем имеют сходное с ними молекулярно-массовое распределение. Однако в отличие от аренов азотсодержащие соединения концентрируются в высококипящих фракциях нефти и являются составной частью смол и асфальтенов в нефти.
До 95 % имеющихся в нефти атомов азота сосредоточены в смолах и асфальтенах. Высказано мнение, что при выделении смол и асфальтенов с ними соосаждаются в виде донорно-акцепторных комплексов даже сравнительно низкомолекулярные азотсодержащие соединения. В соответствии с общепринятой классификацией по кислотно-основному признаку азотсодержащие соединения делятся на азотистые основания и нейтральные соединения. Основания в нефти. Азотсодержащие основания в нефти являются, по-видимому, единственными носителями основных свойств среди компонентов нефтяных систем. Доля азотсодержащих оснований в нефти, титруемых хлорной кислотой в уксуснокислой среде, колеблется от 10 до 50 %. В настоящее время в нефтях и нефтепродуктах идентифицировано более 100 алкил- и ареноконденсированных аналогов пиридина, хинолина и других оснований.
Пиридины в нефти.
Сильно основные азотсодержащие соединения в нефти представлены пиридинами и их производными:

✦пиридины


✦пиперидины.


✦хинолины


✦изохинолины


✦бензохинолины


✦акридины

Анилины в нефти.
К слабоосновным азотсодержащим соединениям в нефти относятся анилины, амиды, имиды и N-циклоалкилпроизводные, имеющие в пиррольном кольце в качестве заместителя алкильные, циклоалкильные и фенильные группы:

В составе сырых нефтей и прямогонных дистиллятов чаще всего обнаруживаются производные пиридина. С увеличением температуры кипения фракций обычно возрастает содержание азотсодержащих соединений, при этом изменяется их структура: если в легких и средних фракциях преобладают пиридины, то в более тяжелых - их полиароматические производные, а в продуктах термической переработки при повышенных температурах в большей степени присутствуют анилины. В светлых фракциях доминируют азотистые основания, а в тяжелых фракциях, как правило, - нейтральные азотсодержащие соединения.
Индолы и карбазолы нефти.
К нейтральным азотсодержащим соединениям, не содержащим в молекулах иных гетероатомов, кроме атома азота, и выделенным из нефти, относятся индолы, карбазолы и их нафтеновые и серосодержащие производные:

✦индолы (бензпироллы)


✦карбазолы

При выделении нейтральные азотсодержащие соединения образуют ассоциаты с кислородсодержащими соединениями и извлекаются попутно с азотсодержащими основаниями.
Прочие соединения азота в нефти.
Наряду с названными монофункциональными, идентифицированы следующие соединения азота в нефти:
    1. Полиароматические с двумя атомами азота в молекуле:

✦1,10-фенантролин.


✦феназин.

    2. Соединения с двумя гетероатомами (азота и серы) в одном цикле – тиазолы и бензтиазолы и их алкил- и нафтеновые гомологи:

✦тиазолы.


✦бензтиазолы.

    3. Соединения с двумя гетероатомами азота и серы в разных циклах:
        ◦ тиофенсодержащие алкилкилиндолы;
        ◦ тиофенсодержащие циклоалкилиндолы;
        ◦ карбазолы.
    4. Соединения с карбонильной группой в азотсодержащем гетероцикле, такие как:

✦пиперидоны.


✦хинолоны.

    5. Порфирины.
Порфирины в нефти.

 
Порфирины в нефти являются типичными примерами нативных нефтяных комплексных соединений.
Порфирины с ванадием в качестве координационного центра (в форме ванадила) или никелем. Ванадилпорфирины нефти - в основном гомологи двух рядов: алкилзамещенных порфиринов с различным суммарным числом атомов углерода в боковых заместителях порфинового цикла и порфиринов с дополнительным циклопентеновым кольцом. Металлпорфириновые комплексы присутствуют в природных битумах до 1 мг/100 г, а в высоковязких нефтях - до 20 мг/100 г нефти.
При исследовании характера распределения металлпорфириновых комплексов между составными частями нефтяной дисперсной системы (НДС) в работе методами экстракции и гель-хроматографии установлено, что 40% ванадилпорфиринов сосредоточено в дисперсных частицах (примерно поровну в составе ядра и сольватного слоя), а оставшаяся их часть и никель-порфирины содержатся в дисперсионной среде.
Ванадилпорфирины в составе асфальтенов вносят значительный вклад в поверхностную активность нефтей, при этом собственная поверхностная активность асфальтенов невелика.
 В меньшей степени изучено влияние металлпорфиринов на дисперсное строение нефти и условия протекания фазовых переходов в нефтяных системах. Есть данные об их отрицательном влиянии наряду с другими гетероатомными компонентами на каталитические процессы нефтепереработки. Помимо этого, они должны сильно влиять на кинетику и механизм фазовых переходов в нефтяную дисперсную систему.

Устьянцев Валерий Николаевич:
«Обычно микроэлементы разделяют на группы с близкими геохимическими свойствами, что предопределяет то или иное их поведение в геологических процессах. По соотношению валентность - ионный радиус элементы примеси можно разделить на транзитные (V, Cr, Mn, Fe, Co, Vi, Cu, Zn), крупноионные (Cs, Rb, Ba, Sr, Pb), высокозарядные (Ti, Sc, Zr, Nb, Ta, Hf, Y, Th, U), a благородные (Au, Ag). Высоколетучие халькофильные элементы (Ge, Ga, As, Se, Cd, Sb, Te, Re, Hg. TI, Bi) также составляют обособленную группу» [Р.П. Готтих и др.]. Показано, что как твердые битумы, так и мальта, рассеянные в осадочных породах, прорванных кимберлитами, имеют мантийные соотношения изотопов неодима, сходные с аналогичными соотношениями в кимберлитах. Эти данные доказывали перспективность использования изотопной геохимии тяжелых элементов для диагностики источника вещества во флюидных, в том числе восстановленных, системах. Вопрос об источнике вещества в битумах нефтегазоконденсатных месторождений остался, при этом, открыт. Последующие исследования изотопного состава неодима и стронция, выполненные по нафтидам других регионов несколько приблизили к пониманию некоторых геохимических аспектов в области нефтяной геологии. По крайней мере, было показано, что генетически нефть месторождения Белый Тигр не имеет никакого отношения к органическому веществу примыкающих осадочных толщ и вмещающим гранодиоритам, что широко обсуждалось (и обсуждается) в научной литературе. Авторы [Готтих Р.П., Писоцкий Б.И. и др., 2012], приходят к выводам:
- нефти всех нефтегазоносных провинций обогащены по отношению к кларку для верхней коры элементами, присущими фумарольным газам вулканов: Hg, As, Sb, Se, Te, Cd, Ag, Au; выборочно: Re, Ni, Cr, Pb, Bi;
- во всех пробах нефти присутствуют элементы платиновой группы, что отличает нефти от верхнекоровых комплексов и пород осадочного чехла;
- в выделенных с изотопным разбавлением из нефти платиноидах, нормализованный на хондрит спектр сходен со спектром платиноносных руд гипербазитов;
- нефти провинций отличаются как по набору ряда элементов на диаграммах: четные-нечетные, так и по некоторым индикаторным отношениям: Ru/Ir, Ti/Y, Zr/Nb, Nb/Ta, Th/Yb;
- хондритнормализованные спектры лантанидов нефти, в большинстве своем, характеризуются ярко выраженной положительной аномалией по европию, что отличает их от аналогичных спектров органического вещества, пластовых (захороненных) вод, осадочных и кислых магматических и метаморфических пород фундамента. Угол наклона в нормализованных спектрах лантаноидов нефти (La/ Yb)N определяется, судя по всему, как щелочностью источника, так и величиной флюидного давления;
- битумы, рассеянные в осадочных породах нефтегазоносных провинций по своим геохимическим особенностям не «вписываются» в разработанную классификацию нафтидов Успенского-Радченко и не могут, в значительно своей части, являться продуктами преобразований нефти. Разница в уровне накопления ряда элементов между битумами и нефтью достигает 4-5 порядков;
- различие в уровнях накопления ряда микроэлементов в планктоне и битумоидах из ОВ нефтематеринских пород (микронефти) может достигать двух порядков. Кларка для данных образований не существует, а содержание микроэлементов в ОВ определяется геохимическими условиями бассейна седиментации. Уровень концентрирования «биофильных» элементов в органических веществах, развивающихся в областях влияния глубинных флюидов, также существенно превышает уровень их накопления в ОВ на удалении от источников (от 510 раз до двух и более порядков);
- изотопные составы продуктов трансформации магматогенных флюидов (битумов) при инверсии редокс-потенциала, в ряде случаев соответствуют источникам расплавов, а не предполагаемым биогенным контаминантам, что позволяет использовать изотопию тяжелых элементов в области нефтяной геологии;
- в битумоидах из ОВ доманикового горизонта ЮТС идентифицирована мантийная компонента, соответствующая резервуару DM. Модельный возраст источника отвечает возрасту проявления в регионе среднедевонского этапа магматизма;
- изотопные составы нефти не отвечают изотопным составам пород осадочного чехла и битумоидам ОВ. Возможным источником вещества для нефтеобразующих флюидов могут быть области EM, образовавшиеся, в том числе, и в результате палеосубдукционных процессов» [Р.П. Готтих и др., 2000].


«Элементарный состав некоторых нефтей (% масс.)
Нефти угленосного горизонта и турнейского яруса Ново-Елховского месторождения очень близки по своим свойствам. Их относительные плотности находятся в пределах 0,8980— 0,9050. Нефти относятся к типу высокосернистых (2,6—2,8% 5) содержание парафина 2,8—3,4%, сернокислотных смол более 60%. Выход светлых фракций до 300° С относительно невысок и составляет 34,8—35,2%, причем на бензины приходится 15—18%. [c.11]
Нефти пашийского горизонта Ромашкинского, Ново-Елхов-ского и Акташского месторождений весьма близки по своим свойствам. Плотности нефтей находятся в пределах 0,8620— 0,8663 г/сж . По содержанию серы (1,61—1,68%) и парафина (3,8—5,1%) они относятся к типу сернистых и парафинистых. Больше всего парафина содержится в ромашкинской нефти (5,1%). На смолистый характер нефтей указывает значительный выход сернокислотных (34—40%) и силикагелевых (7,2— 10,6%) смол, асфальтенов (3,8—4,5%), кокса (5,0—5,9%). В табл. 8 приведены данные о потенциальном содержании фракций по кривой НТК. Выход фракции до 350° С составляет 46— 49% выход фракций до 500° С достигает 64—71% (наибольший выход фракций приходится на ромашкинскую нефть). [c.14].   

Несмотря на то, что нефть залегает в различных геологических условиях, элементный состав её колеблется в узких пределах. Он характеризуется обязательным наличием пяти химических элементов - углерода, водорода, серы, кислорода и азота при резком количественном преобладании первых двух. Содержание углерода в нефтях колеблется в пределах 83-87%, в природных газах 42-78%. Водорода в нефтях 11-14%, в газах 14-24%. Из других элементов в нефтях чаще всего встречается сера. Её содержание в отдельных нефтях достигает 6-8%. В природных газах сера обычно содержится в виде сероводорода, количество которого иногда достигает 23% (Астраханское месторождение) и даже более 40% (Техас).
Содержание кислорода в нефтях иногда достигает 1-2%. В природных газах кислород присутствует преимущественно в виде СО2, количество которого изменяется от концентраций, близких к нулю, до почти чистых углекислых газов (80% СО2 - Семидовское месторождение в Западной Сибири, 99% СО2 — Нью-Мехико).
Содержание азота в нефтях не превышает 1%, а в природных газах может достигать десятков процентов. Некоторые природные газы почти полностью состоят из азота (85-95 % N2, месторождение Вест-Брук в Техасе).
В природных газах присутствуют гелий, аргон и другие инертные газы. Содержание гелия в газах обычно менее 1-2%, хотя в некоторых случаях оно достигает 10%.
Концентрация аргона в газах, как правило, не превышает 1 %, и лишь в некоторых случаях достигает 2 %.
В составе нефти в очень малых количествах присутствуют и другие элементы, главным образом металлы: алюминий, железо, кальций, магний, ванадий, никель, хром, кобальт, германий, титан, натрий, калий и др. Обнаружены также фосфор и кремний. Содержание этих элементов не превышает нескольких долей процента, определяется геологическими условиями залегания нефти. Так, основным элементами мезозойских и третичных нефтей является железо. В палеозойских нефтях Волго-Уральской области повышенное содержание ванадия и никеля. Считается, что часть микроэлементов находится в нефти с момента её образования в осадочных породах, а другая часть накапливается в последующий период существования нефтей.
Большой интерес для выяснения геохимической истории нефтей представляет изотопный состав нефтей, т.е. соотношение в них изотопов углерода, водорода, серы и азота. По имеющимся данным, отношение масс различных изотопов в нефтях составляет: 12С/13С 91-94, Н/Д (1Н/2Н) 3895-4436, 32S/34S - 22-22,5, 14N/15N — 273-277.
Различные компоненты одной и той же нефти имеют неодинаковый изотопный состав элементов. Низкокипящие фракции характеризуются облегчённым составом углерода. Различие в протонном составе наблюдается и для отдельных классов соединений (например, ароматические углеводороды богаче изотопом 13С, чем парафиновые углеводороды)» (Сыркин А.М.,  2002).
Элементный состав нефти месторождений России и СНГ
Название месторождения
Содержание в %
C     H     O     S     N
Охинское (Сахалин)
87.15    11,85     0,27 0,3 0,43
Грозненское (Чеченская республика)
85,9         13,1     0,8 0,13 0,07
Тюменское (Западная Сибирь)
85,92         12,88     0,36 0,66 0,18
Сураханское (Азербайджан)
85,3     14,1     0,54 0,03 0,03
Ромашкинское (Татарстан)
83,34 12,65 0,21 1,62 0,18
Коробковскае (Волгоградскаяобл)
85,1     13,72     0,02 1,07 0,09
Могутовское (Оренбургская обл.)
83,85     12,02     0,85 3 0,28
Радаевское (Самарская обл.)
82,78     11,72     2,14     3,05     0,31
Полуостров Мангышлак
85,73     13 0,4     0,69 0,18
Арланское (Башкортостан)
84,42     12,15     0,06 3,04 0,33
Ухтинское (Республика Коми)
85,47     12,19     1,93     0,09     0,2
Самотлорское (Западнаят Сибирь)
  86,23     12,7     0,25 0,63 0,1

«Состав Hефти. Представляет жидкость более легкую, чем вода, Н. разных мест, иногда и соседних, имеет много различий по разным свойствам: цвету, плотности, летучести, температуре кипения и т. п., но всегда это есть жидкость в воде почти нерастворимая и по элементарному составу содержащая преимущественно углеводороды с подмесью небольшого количества кислородных, сернистых, азотистых и минеральных соединений, как видно не только по элементарному составу, но и по всем свойствам, принадлежащим углеводородам.
В бакинской (апшеронской) Н. Марковников и Оглоблин нашли:
 от 86,6 до 87,0% углерода и от 13,1 до 13,4% водорода.
В пенсильванской Н. С. К. Девилль нашел:
 83—84% углерода, 13,7—14,7% водорода,
- в рангоонской (в Бирме) он же — 83,8% углерода и 12,7% водорода,
- в огайской (Соединенные Штаты) Мабери нашел:
- 83,8—85,8% углерода и 13,05—14,60% водорода,
- в канадской (он же, 1897) — 83,6—83,9% углерода и 13,39—13,36% водорода.
Недостающее до 100 отвечает содержанию кислорода, серы, азота, воды и минеральных подмесей.
Количество серы в некоторых сортах Н. едва составляет несколько сотых % (например, в обыкновенной зеленой бакинской Н. 0,06%) и наибольшее найдено в огайской и канадской Н., но и там Мабери нашел только 0,3—0,8% серы.
Азота всегда мало, обыкновенно менее 0,2%.
Минеральных подмесей (золы) еще меньше, и мне неизвестен ни один случай, где количество их доходило бы до 0,1%.
Поэтому, за вычетом суммы всех других составных начал, в сырой Н. надо принимать от 1 до 4% кислорода. Оно и понятно из того, что в Н., несомненно, содержатся органические (жирные и к ним близкие) кислоты, так как они содержат кислород. Различия в элементарном составе, как видно, невелики, несмотря на значительную разность свойств. Однако, все-таки разность состава сказывается в том, что:
- на 12 грамм (атомное количество) углерода в пенсильванской Н. около 1,95 водорода, а в бакинской только 1,82, а в канадской (1,91) и др. — промежуточное количество.
Это уже показывает, что во всей массе Н. содержится всегда меньше водорода, чем в углеводородах состава СnH2n (потому, что для них на 12 частей углерода приходятся 2 части водорода), и что от этого состава бакинская Н. дальше, чем американская, что подтверждается и знакомством с углеводородами, извлекаемыми из Н., как увидим далее». (Энциклопедический словарь Брокгауза и Ефрона)..

Компонентный состав газа:  азот + редкие;  гелий, % 10,36; метан, % 39,64;  этан, % 22,28;  пропан, % 18,93;  изобутан, % 1,74;  н. бутан, % 4,36;  изопентан, % 0,67;  н. пентан, % 0,65;  пексан, % 0,46;  сероводород, % 0,02;  углекислый газ, % 0,89;  плотность газа, кг\м3 1,2398 .Источник: https://drprom.ru/bakalavrskaya/romashkinskoe-mestorojdenie.

Навигация

[0] Главная страница сообщений

[#] Следующая страница

[*] Предыдущая страница

Перейти к полной версии