Приручить нейтронную звезду (о лаборатории "Протон-21")Анатолий Лемыш
Источник:
https://www.chitalnya.ru/work/86707/Развороченный образец мишени. Видно, что взрыв произошел в ее центре
Опубликовано в апреле 2005г. в еженедельнике "2000" (Киев)
!!! От автора: Эту статью я не выкладывал бы на литературном сайте, но она исчезла с сайта газеты "2000" при переформатирования сайта. Не хотелось бы, чтобы эта статья пропала... !!!
#Производительность такой установки, при кпд порядка 1%, потенциально даст нам стомегаваттный блок
&&Приручить нейтронную звезду
&&&Украинские ученые утверждают, что покорили термоядерную реакцию
^Анатолий ЛЕМЫШ
#Кажется, украинские ученые-ядерщики сделали открытие, по своему значению сопоставимое с добыванием нашими предками огня или изобретением колеса. Если их теория подтвердится, человечество получит источник практически даровой энергии – получаемой в любом количестве, из чего угодно, экологически чистой и при малых размерах установки. По крайней мере, 7 апреля руководители Лаборатории электродинамических исследований «Протон-21» докладывали о результатах своих исследований на совещании у Премьер-министра Юлии Тимошенко, и она поручила ученым из НАНУ тщательно проверить их сведения, а также подать свои предложения.
Данная ситуация словно списана из фантазийных романов об изобретателях «перпетуум мобиле»: некий энтузиаст-одиночка, наплевав на признанные теории и авторитеты, чуть ли не в сарае строит вечный двигатель, машину времени или получает эликсир жизни. В реальной жизни к таким персонажам относишься, мягко говоря, скептически: мне пришлось встречаться с дюжиной из них, результатом было разочарование. Но киевские ученые из «Протона-21» демонстрируют такие результаты, от которых немеешь. Бомбардируя мишень сравнительно слабым пучком ионов, они «на выходе» получают явления, происходящие, как считается, внутри нейтронных звезд. Мишень коллапсирует (сжимается внутрь), потом происходит взрыв, он сопровождается ярчайшей вспышкой, ядерной трансмутацией (появлением большого количества ядер элементов, которых не было в мишени) и потоком всевозможных излучений. Энергия взрыва в миллионы раз (!) превышает энергию первоначального ионного удара. Остается ее «запрячь», что, по всей видимости, задача непростая, но технологически вполне реализуемая.
Читатель, не сомневаюсь, хмыкнет: «Подобыми экспериментами занимаются тысячи физиков во всем мире в последние 60 лет, причем на гигантских синхрофазотронах, вроде Серпуховского или того, что в ЦЕРНе. В «термояд» вложены немеряные миллиарды – и что, киевские самодеятельные «левши» всех обскакали? Увольте, не верю!»
На встречу с научным руководителем проекта Станиставом Адаменко я шел с примерно таким же сарказмом. Да еще и запасся пачкой критических отзывов на исследования по т.н. «холодному ядерному синтезу», на который, как мне поначалу показалось, сильно смахивает данный проект. Не могу сказать, что рассказанное г-ном Адаменко и его коллегами абсолютно меня убеждает. Но исследования его группы вышли на такой уровень, что при всем скепсисе просто неприлично не рассказать о них широкой общественности. А дальше так: подтвердится его теория, удастся «Протону-21» получить хотя бы часть того, о чем заявлено – будем аплодировать, подключатся общественность и государство, мир получит колоссальный источник дешевой и чистой энергии. Окажется вся эта затея мыльным пузырем – забудем о них.
Тем не менее, фотографии развороченных взрывами изнутри образцов выглядят чрезвычайно красноречиво (сами образцы можно расмотреть лишь под микроскопом). А масса таблиц с результатами анализов около 10 тысяч опытов заставляет отнестись к ним со всей серьезностью.
&&&Ядерная «зажигалка»
Вот что рассказывает г-н Адаменко. Поскольку речь ученого насыщена специальной терминологией и сведениями, понятными лишь ядерщикам, позволю себе пересказать его монолог с некоторыми упрощениями.
Станислав Адаменко: Первоначально мы ставили перед собой цель разработать эффективную и безопасную технологию утилизации ядерных отходов. Собирались сделать «зажигалку», чтобы заставить радиоактивные атомы «сгореть» и превратиться в «золу». Первый успешный опыт по «ядерному горению» вещества, правда, на нерадиоактивных мишенях, был произведен 24 февраля 2000 года. Через пару месяцев мы обнаружили среди прочих стабильные, нераспадающиеся атомы сверхтяжелых химических элементов. Наконец, на нашей установке, находящейся в лаборатории Института ядерных исследований НАН Украины, в 2002 году мы впервые провели успешные эксперименты по нейтрализации радиоактивности. И вышли далеко за пределы исходной темы.
Почему не получается управляемая термоядерная реакция на протяжении всех почти 60 лет, с тех пор как человечество пытается обуздать термояд? Ученые не могут подобрать условия, при которых пойдет стабильный процесс. После многих поисков нам удалось найти такой механизм, и эту реакцию удалось запустить. Вкратце идея такова: по поверхности маленькой шарообразной мишени мы ударяем мощным, но очень кратковременным пучком ионов. Поверхностный слой передает удар внутрь, на более глубокие слои, те, в свою очередь, еще ниже. Так как мишень шарообразна, по мере углубления ударной волны в вещество сила сжатия возрастает. Ну, как цунами: там, где океан глубокий, волна его не очень заметна. Но на мелководье она резко возрастает, выплескиваясь на берег катастрофическими валами.
Так и ударная волна в шарике: начиная с какого-то слоя, давление ее становится настолько большим, что сдавливает атомы вещества, невзирая на их взаимное отталкивание. Это давление в миллионы раз превышает все, что было до того создано на земле. В самом центре образуется ядерный «котел» вещества с неимоверной плотностью, где электроны сбиты с орбит вокруг ядер, где сами ядра потеряли исходные свойства и перемешались друг с другом. Такое состояние длится ничтожную долю секунды. Потом «котел» взрывается, разбрасывая остатки ядерной смеси и высвобождая огромное количество энергии. Ядерная смесь, разлетаясь, образует новые атомы, многих из которых не было в исходном материале мишени. Главное в этом методе – создать условия для такого ионного удара, при котором весь поверхностный слой мишени начнет сжиматься внутрь. Мы назвали его «Способ ударного сжатия вещества».
Для тех, кто более глубоко знаком с ядерной физикой, приведу ряд сведений и цифр. Ученые всего мира, пытающиеся осуществить управляемую термоядерную реакцию, экспериментируют со смесью дейтерий-тритий (Д-Т). По теории, для того, чтобы достичь ее воспламенения и получить выход энергии, превышающей затраченную на «поджог», надо создать условия, описанные в давно известном критерии Лоусона. Согласно этому критерию, во-первых, температура Т плазмы должна буть не ниже 7-10 кэВ (70-10 млн. градусов по Кельвину). А во-вторых, плотность плазмы n (количество ионов в см 3) и время ее удержания при заданной температуре должны удовлетворять соотношению:
n х > 10 14.
Создать такую плотность плазмы при заданной температуре, да еще суметь удержать ее нужное время – эта задача является недостижимой мечтой физиков всего мира. По результатам, опубликованным Станиславом Адаменко и его коллегами, им удалось внутри ядра мишени достичь следующих условий:
Т >> 40 кэВ (верхняя оценка 100-200 кэВ);
n >> 10 27 ядер/см 3 (верхняя оценка 10 30 – 1033 ядер/см 3);
> 10 -8 сек.
Таким образом, в каждом из 10 тысяч экспериментов критерий Лоусона заведомо превышен:
n х >> 10 15!
Такая плотность вещества и энергии характерна для недр нейтронных звезд и белых карликов. Это экстремальное состояние материи, впервые достигнутое в земных условиях, является результатом описанного выше искусственно вызванного коллапса мишени.
&&&Была медь – получили всю таблицу Менделеева
Дальнейший разговор мы ведем с директором лаборатории «Протон-21» Александром Кохно и ее сотрудником, профессором Киевского университета им. Т. Г. Шевченко Владимиром Высоцким. Они показывают удивительные снимки развороченных мишеней, причем видно, что взрывы происходили в их центре, в глубине вещества. Особо заинтересовал меня снимок странной полусферы, впечатанной в тело экрана, с вырезанным четким шариком в центре. Ученые поясняют, что именно там, внутри этого шарика, и произошла реакция ядерного коллапса, и что взрывом полусферу вырвало из мишени и вбило в экран.
Александр Кохно: Нам впервые в мире удалось добиться нужной плотности пучка электронов на острие мишени и выполнить образом критерий Уолсона. Мы хотели поначалу реализовать классический метод управляемого термоядерного синтеза. Но только своим путем. Когда в ходе опытов мы получили результаты, не вписывающиеся в прогнозы, мы начали их анализировать. И поняли, что перед нами совершенно иные механизмы. Стали создавать их теоретические модели, оптимизировать установку, и итерационным путем пришли к тому, что видим сегодня.
Мы открыли дверь в этот процесс. Оттуда хлынул поток совершенно новой информации. Мы просто не успеваем все проанализировать и осмыслить. До сих пор барахтаемся в нем и захлебываемся.
-- Что вы получаете в результате? Какие предварительные выводы можно сделать?
В.В. -- Первое: эти опыты сопровождаются очень сильным по энергии излучением: рентгеновским, гамма, световым и т.д. Световая вспышка ярчайшая.
Второе: получаются новые элементы. Как весь спектр таблицы Менделеева, так и сверхтяжелые, о которых до сих пор никто и не подозревал, что они реально существуют. Это трансурановые, а также редкие изотопы. Такой пример: самый распространенный изотоп железа – Fe-56. Его содержание в общей массе железа примерно 92%. А есть редкий изотоп Fe-57. Его довольно мало, около 2,2%. Это т.н. «мессбауэрский изотоп», он применяется в ядерной физике. Рыночная его стоимость $10 тыс., посколько отделить его от обычного железа довольно трудно. Так вот, в ряде наших экспериментов Fe-57 получалось больше, чем Fe-56. Даже в этом частном случае мы можем организовать коммерчески выгодное производство.
Что касается сверхтяжелых ядер, то, как известно, до сих пор в лучших лабораториях мира синтезированы элементы с массовыми числами до 216. Причем, на конференциях физиков звучали доклады: одни зафиксировали получение 4 ядер (!) элемента с массовым числом 216, другие – 5 ядер в течение полугода. У нас трансурановые регистрируются в количестве миллионов ядер, причем максимальное массовое число ядра – около 5000 единиц. Есть подозрение, что рождались ядра с массовым числом 100 000.
Третье. Потоки заряженных частиц. Это ионы с большой энергией, электроны, протоны, дейтоны, плазма. Протонов аномально много. При каждом таком взрыве, условно говоря, рождается малая вселенная, новый мир. Мы получили этому интересное подтверждение. Известно распределение химических элементов во Вселенной: сколько в ее массе процентов водорода, гелия, лития и т.д. Существует кривая, построенная по этим данным. Так вот, распределение элементов, получаемых при наших опытах, очень хорошо корреллирует с ней. Что бы мы ни закладывали в «топку», у «золы» в среднем один и тот же состав. Это проверено огромным количеством опытом. Что касается энергии частиц, то они имеют от 100 кэВ до 8-10 кэВ у протонов и дейтонов.
Четвертое. Прикладная дезактивация. В результате мини-взрывов облучаемое вещество избавляется от такого явления, как радиоактивность. После того, как в результате воздействия на образец произошел его коллапс, вещество потеряло первоначальный состав. В какой-то момент получилась «ядерная каша», где атомов в привычном понимании – протоны, нейтроны, электроны – уже нет. Из этого состава тут же создаются новые ядра, в другой «упаковке», причем это новое их перерождение должно быть максимально устойчивым. Нестабильные ядра просто не выживают, они тут же распадаются. И если вещество первоначально было радиоактивным, то после взрыва радиоактивность отсутствует!
Мы проделали такие опыты: облучали по нашей методике мишень из кобальта-60. Замерили радиацию до и после. Результат потряс всех. Радиация исчезла! Но, конечно, только в той зоне, во внутренней части шарика, где был коллапс. Альфа-, бета-, гаммаизлучения, нейтронное – все исчезло! Во внешней оболочке мишени, понятно, активность осталась.
Таким образом, этот метод можно использовать для уничтожения всевозможных отходов. Причем не обязательно радиоактивных: любые яды, самые страшные, можно превратить в безопасные вещества и заодно получить энергию. Если, конечно, суметь разумно сделать из них мишени для ядерного коллапса. А это не так просто.
Пятое – это внешние проявления и эффекты. Мы в наших экспериментах регистрируем кучу аномалий. Материал становится совершенно другим, изменяется его структура, образуются поры, на которые идет большая энергия. Внешние механические эффекты – это то, за счет чего проще всего «отбирать» энергию взрывов, если мы хотим использовать это явление для энергетики. Специалисты по ядерному материаловедению говорят: если сравнить ваше вещество с тем, что проработало в реакторе 20 лет, то у вас разрушений структуры значительно больше.
Здесь по каждому пункту можно развивать и теории, и технологии. Простор для исследований и применений поистине безграничный.
&&&Реактор величиной с футбольный мяч
-- Вопрос прагматический: как найденные вами эффекты можно использовать?
В.В.: Самой простое – для дезактивации радиоактивных отходов. Чернобыль показал, что это становится критичным. В ноябре я был в Лас-Вегасе на конференции по ядерной энергетике, которую проводило МАГАТЭ. Каждая страна докладывала, что она может сделать по уничтожению отработанного топлива. Ничего нового до сих пор не придумали: их захоранивают. Американцы пробуют разрабатывать гигантские протонные ускорители и облучать отходы, в надежде, что в результате образуется нечто менее радиоактивное. Первая пробная установка будет примерно к середине века. Уже сейчас на нее идут сотни миллионов долларов в год. При этом окончательной утилизации топлива там не будет. Так что для нашей установки здесь рынок необъятный. Хотя есть масса вопросов, и нужны соответствующие разраборки.
-- Реально ли при помощи вашей установки получать электроэнергию? Как запрячь ваш взрыв в генератор тока?
-- Можно идти разными путями. Каждый из наблюдаемых процессов – и излучение, и потоки частиц, и внешние эффекты – потенциально могут быть для этого использованы. Надо просчитать, какой вариант будет оптимальным. Примитивный путь – это энергию коллапса превратить в тепло, при помощи тепла создать пар, чтобы он вращал турбины генератора. Другой способ – энергию из реактора выводить не в виде активного теплоносителя, при этом неизбежны огромные потери, а в самой зоне активности создать условия, при которых будет образовываться когерентный лазерный луч. Это уже высокоорганизованная энергия, ее легко перебросить на большие расстояния и на конечной точке превратить в электричество. Может, выгодно будет использовать магнитогидродинамические генераторы. Они похожи на обычные генераторы, в которых электрический ток образуется при пересечении проводниками магнитного поля. Это все в принципе реально и просчитывается. Но до такой ситуации, чтобы наша лаборатория сама себе давала свет, мы еще не дошли. Пока идут эксперименты для понимания сущности процессов. А в них главное – каждый раз поставить новую мишень, достичь вакуума, измерить все параметры, произвести выстрел, снова измерить, разобрать установку, заменить мишень и т.д.
Для реального получения электричества система должна быть автоматической, чтобы не один выстрел в час, а сто – в секунду. Автоматическая подача стержня-мишени, съем энергии – все это серьезные технологические проблемы. Их надо еще решить.
-- Расскажите, пожалуйста, об уровне энергоотдачи установки.
B.B.: Энергию, выделяющуюся при коллапсе и последующем взрыве определить несложно. В пучок ионов мы вкладываем 100-200 джоулей для создания первичной ионизации. Для сравнения: чтобы стакан воды нагреть на 1 градус, надо 400 джоулей. Мы берем четверть этой энергии, это неощутимая величина. Но само облучение мишени длится очень кратковременно. Что получаем после коллапса? Во-первых, изотопы элементов всей системы Менделеева от водорода до сверхтяжелых элементов. Можно для каждого ядра просчитать, сколько для такого превращения понадобилось энергии. Получается, что только по каналу ядерных превращений потребовалось 10-30 мегаджоулей! То есть, соотношение вложенной энергии и выплеснувшейся разнится на 5-6 порядков!
А. К.: Если взять энергию только лишь одной световой вспышки, то она намного превышает ту, что была вложена в процесс – свыше 100%. Ионная компонента дает 1000%, это нижняя оценка.
В.В.: Прикидка дает, что если делать сто выстрелов в секунду, будет выделяться по мегаджоулю энергии за выстрел. За секунду – сто мегаджоулей. Производительность такой установки, при кпд порядка 1%, потенциально даст нам стомегаваттный блок! Это всего в десять раз меньше, чем стандартные блоки на ЧАЭС. Причем топливом может быть что угодно: медь, железо, кварц, даже вода. И – никакой радиоактивности ни до, ни после!
-- Каковы будут, по вашим прикидкам, размеры такого реактора?
А.К.: Сама машина небольшая. Реактор – размером со стол. Сейчас установка крупная, потому что на нее повешена всякая диагностика. Но и то занимает всего лишь комнату. А активная зона – с футбольный мяч. Так что в будущем нет смысла строить гигантские станции, их можно делать компактными, передвижными и доставлять в нужное место. Хотя, повторяю, здесь есть еще много технических проблем, которые предстоит решать не один год.
-- А что вы скажете по поводу безопасности вашей маленькой бомбочки? Не могут ли ее использовать, например, террористы?
В.В.: Это небольшие процессы, при их помощи нельзя устроить большой взрыв. К тому же, он всегда направлен внутрь.
-- Но в результате-то получается взрыв наружу! И вообще: нельзя ли при помощи такого мини-ядерного взрыва запустить реакцию, которая привела бы к коллапсу всего окружающего мира?
В.В.: Нет! Взрыв всегда принципиально ограничен той мишенью, на которую направлен луч, и весь процесс проходит внутри нее. Он не вовлекает в реакцию то, что снаружи.
А.К.: А для того, чтобы произвести достаточно больший взрыв, надо суметь нагреть лучом мишень размером минимум в сантиметр. Наши оценки показали, что это невозможно. Нельзя построить карманную атомную бомбу, основанную на этом эффекте.