Взялись за разработку газоконденсатных месторождений и рассчитывают добывать еще 100 лет
https://youtu.be/YF2kYHUOgeIЦитата
http://gasforum.ru/obzory-i-issledovaniya/750/2) Место газового конденсата в деятельности нефтяных и газовых компаний довольно специфично. Обычно добыча конденсата связана с добычей природного газа и поэтому в большей степени конденсат является продуктом газовиков. Однако
по своему составу, конденсат является скорее «легкой», светлой нефтью. Отсюда исходит практика, когда говорят о добыче нефти, указывать, в том числе и добычу конденсата. Другое название конденсата – это «белая нефть», что неудивительно, так как обычно конденсат прозрачный, либо слабо-желтого цвета от примесей нефти.
3) В отношении добычи конденсата и добывающих его предприятий необходимо владеть несколькими цифрами для понимания существующих масштабов деятельности. В России в год добывается порядка 12,5 млн. тонн конденсата. Из них порядка 10 млн. тонн (80%) добывается предприятиями Газпрома, – прежде всего это Уренгойгазпром и Астраханьгазпром, каждый порядка 3,6 млн. тонн. Ежегодно добыча конденсата растет примерно на 10%, что довольно много. Особенность заключается в том, что рост добычи обеспечивается главным образом не Газпромом, а такими компаниями, как Нортгаз, Новатэк, Роспан, Роснефть и др. Такая ситуация в добыче конденсата приводит, в частности, к постоянному снижению доли Газпрома в общей добыче конденсата примерно на 6%. Это означает, что при сохранении тенденции, всего через четыре года (в 2007 г.) Газпром будет добывать лишь 50% конденсата.
Подробную статистику по добыче конденсата приводится в Приложении № 1. Прогноз добычи газового конденсата на 2003 г., сделанный специалистами ЭРТА-консалт, а также планы некоторых компаний в отношении добычи конденсата приводятся в Приложении № 2.
4) Объемы добычи конденсата абсолютно несопоставимы с добычей нефти или природного газа. Это связано с тем, что изначально нефтяниками добывалась исключительно нефть, а газовики добывали газ из сеноманских газовых залежей. Но истощение запасов сухого сеноманского газа приводит к все к большей необходимости освоения месторождений газоконденсатного типа. Этим и объясняется рост добычи конденсата, что означает, помимо прочего и увеличение предложения газового конденсата.
5) Предложение газового конденсата необходимо рассматривать в привязке к географии. Например, конденсат крупнейшего Ковыктинского ГКМ Иркутской области планируется полностью направлять на Ангарский НХК. С другой стороны, реализация существующих у Газпрома планов по переработке конденсата в Новом Уренгое позволит обеспечить загрузку всего добываемого в Надым-Пур-Тазовском регионе газового конденсата.
Конец цитаты.
Цитата
https://studfiles.net/preview/2180155/page:5/Самая основная и главная особенность присущая газоконденсатным месторождениям, заключается в проявлении ретроградной, обратной конденсации при их разработке. Это связано с тем, что пластовые флюиды в этих залежах характеризуются тем, что в газовой фазе жидкие углеводороды находятся в растворенном состоянии. При этом следует отметить, что газовая фаза включает в себя углеводородные и неуглеводородные (азот, сероводород, углекислый газ, гелий и т.д.) компоненты. В процессе снижения пластового давления из газоконденсатной системы начинают выпадать жидкие углеводороды (газовый конденсат), т.е. фракции С5+выс.
Выпадающий в пласте газовый конденсат, в случае если разработка газоконденсатного месторождения осуществляться на режиме истощения пластовой энергии, является практически потерянным. Но его можно, в какой степени частично извлечь, если будут достигнуты
давления, когда начинается процесс прямого испарения. Это возможно в зоне очень низких давлений, порядка 1 - 2 МПа и менее.
...
С целью получения максимальной добычи газового конденсата на многих газоконденсатных месторождениях возникает необходимость поддержания пластового давления в процессе его разработки.
Поддержание пластового давления может быть осуществлено как за счёт закачки сухого (отбензиненного) газа, так и за счёт закачки воды. В первом случае это осуществляется в условиях, когда имеется возможность консервации запасов газа данного месторождения на какой-то определенный период времени. Возможность закачки воды зависит от наличия дешевых источников воды, приёмистости нагнетательных скважин и степени неоднородности пласта по коллекторским свойствам.
Конец цитаты
Цитата
http://mirznanii.com/a/24662/razrabotka-mestorozhdeniy-gazokondensatnogo-tipaГазоконденсатные залежи в их начальном — на момент открытия — состоянии характеризуются высокими пластовыми давлениями, достигающими обычно нескольких десятков мегапаскалей. Встречаются залежи с относительно низкими (8—10) и очень высокими (до 150— 180 МПа) начальными пластовыми давлениями. Основные запасы углеводородов в залежах газоконденсатного типа приурочены к объектам с начальными пластовыми давлениями 30 — 60 МПа.
В отечественной газопромысловой практике разработка газоконденсатных месторождений осуществлялась до недавнего времени на режиме использования только естественной энергии пласта. Такой режим («истощения») требует для своей реализации минимальных капитальных вложений и относительно умеренных текущих материальных и финансовых затрат. В истории разработки газоконденсатного месторождения, как и при разработке чисто газового, происходит последовательная смена нескольких характерных периодов: освоения и пробной эксплуатации; нарастающей, максимальной, падающей добычи; завершающий период. В отличие от разработки чисто газовой залежи в данном случае приходится иметь дело с продукцией, постоянно изменяющей свой состав. Это связано с явлениями ретроградной конденсации пластовой углеводородной смеси при снижении пластового давления. Высокомолекулярные углеводородные компоненты смеси после снижения давления в залежи ниже давления начала конденсации рнк переходят в жидкую фазу, которая остается неподвижной практически на всем протяжении разработки месторождения в силу низкой фазовой насыщенности (не более 12—15% объема пор), намного меньшей порога гидродинамической подвижности (40 — 60 %).
...
В качестве примера разработки на режиме истощения можно рассмотреть эксплуатацию запасов углеводородов Вуктыльского газоконденсатного месторождения. История разработки этого месторождения (Республика Коми) началась с открытия в середине 60-х годов крупнейших в европейской части России залежей углеводородов в пермско-каменноугольных карбонатных отложениях. Месторождение приурочено к брахиантиклинали субмеридионального простирания площадью более 250 км2 и амплитудой свыше 1500м (по подошве ангидритовой пачки кунгурского яруса). Складка располагается в осевой части Верхнепечорской впадины Предуральского Краевого прогиба (Тимано-Печорская нефтегазоносная провинция). Западное крыло складки крутое (до 70 —90°), свод узкий гребневидный; в при-осевой части складки это крыло нарушено надвигом, падающим на восток под углом 65 — 70°. Амплитуда вертикального смещения около 600м. Восточное крыло складки относительно пологое (20 — 25°).
В геологическом разрезе присутствуют ордовикско-силурийские, каменноугольные, пермские и триасовые отложения, перекрытые четвертичными. Установлены две газоконденсатные залежи. Основная залежь приурочена к органогенным известнякам и образовавшимся по ним вторичным доломитам визейско-артинского возраста. Продуктивная толща по вертикали составляет около 800м; она перекрыта 50—100-метровой дачкой трещиноватых аргиллитов верхнеартинского подъяруса и гипсово-ангидритовой толщей кунгурского яруса, являющейся хорошей покрышкой. Открытая пористость коллекторов изменяется от 5 — 6 до 22 — 28%, проницаемость колеблется от 10-15 — 10-16 до (4 — 8)10-12 м3 . Залежь массивная, сводовая, тектонически ограниченная.
Глубина залегания кровли резервуара 2100—3300м. Имеется нефтяная оторочка.
Пластовая газоконденсатная смесь характеризовалась следующим начальным усредненным составом, % (молярные доли): метан 74,6; этан 8,9; пропан 3,8; бутаны 1,8; пентан плюс вышекипящие 6,4; азот 4,5. Конденсат имел начальную плотность около 0,745 г/см3 , содержание в нем метановых углеводородов составляло, % (молярные доли), 71; ароматических 11,9; нафтеновых 17,1. В конденсате было от 0,5 до 1,2% парафина, от 0,02 до 0,09 % серы. Нефть нефтяной оторочки легкая (плотность 0,826 — 0,841 г/см3 ), высокопарафинистая (4,0 — 8,1%), содержание серы в ней от 0,15 до 0,22%.
Начальные запасы газа на Вуктыльском месторождении составляли 429,5 млрд. м3 , конденсата 141,6 млн. т, Начальная характеристика пластовой системы оценивалась следующими средними величинами: пластовое давление 36,3 МПа, температура 62 °С, давление начала конденсации пластовой углеводородной смеси 32,4МПа, конденсатогазовый фактор 360 г/см3 .
Разработка Вуктыльского НГКМ была начата в 1968г. Генеральный план расстановки скважин на месторождении формировался в соответствии с принципами, обоснованными в проектах ОПЭ и разработки. Бурение эксплуатационных скважин было начато в 1968г. Залежь разбуривалась без отступлений от генерального плана, не считая необходимых уточнений, связанных с рельефом местности и выдачей резервных точек взамен ликвидированных скважин.
Совмещение ОПЭ с разведкой позволило из 44 разведочных скважин использовать 28, т.е. 21 скважину перевести в эксплуатационные, шесть — в контрольно-наблюдательные и одну — в пьезометрические.
Темпы ввода скважин в эксплуатацию резко отставали от проектных, в то же время объемы добычи газа и конденсата соответствовали проекту.
Первые четыре года разрабатывался только северный купол, в котором сосредоточена основная доля запасов газа и конденсата. Южный купол введен в разработку в 1973г. Среднесуточные дебиты поддерживались на максимально возможном уровне. При этом большинство скважин (около 80 %) работало одновременно по лифтовым трубам и затрубному пространству и при максимально допустимых депрессиях, составляющих от 6 до 8 МПа. Диапазон дебитов в тот период был очень большой — от 200 до 2000 тыс. м3 /сут. По 15 скважинам среднегодовой дебит был более 1000 тыс. м3 /сут, по 40 скважинам от 500 до 1000 тыс. м3 /сут.
Учитывая большой этаж газоносности и сложное строение месторождения, для наблюдения за поведением пластового давления по залежи результаты всех замеров приводили к средневзвешенной по запасам плоскости с отметкой минус 3025 м. Распределение давления по скважинам до начала разработки месторождения определялось положением скважин на структуре и отметкой вскрытых интервалов. Среднее начальное пластовое давление на средневзвешенной плоскости составило 36,3 МПа.
Эксплуатационное бурение позволило к началу 80-х годов довести фонд действующих скважин до полутора сотен. Тем не менее, поскольку бурение отставало от проектных объемов отбора газа, скважины работали с относительно большими депрессиями. К этому периоду времени на месторождении были достигнуты максимальные отборы газа — 18—19 млрд. м3 в год.
С 1982—1983гг. начался период падающей добычи (рис. 1, табл. 1.).
Динамика показателей разработки Вуктыльского НГКМ
...
Газоносные пласты Битковского газоконденсатного месторождения (Украина) приурочены к отложениям ямненской, манявской и выгодско-пасечнянской свит складки "Глубинная",
залегающим на глубинах 1900 — 2800 м. Выше по разрезу в менилитовых отложениях этой же складки содержится нефть. Продуктивные отложения представлены чередованием песчаников, известняков, глинистых сланцев, алевролитов, аргиллитов и гравелитов. В каждой из свит насчитывается от 2 до 20 песчаных пропластков толщиной от 1 до 22 м. Газоносные пласты характеризуются низкими коллекторскими свойствами (пористость составляет в среднем 0,12, проницаемость по промысловым данным (2*15)-10"14 м2 ) и высокой неоднородностью.
...
Для достижения эффекта потребуется нагнетать значительные объемы воды и газа, соответственно следует быть готовыми к тому, что возникнет необходимость — после прорыва воды — эксплуатировать скважины с большим содержанием в продукции воды, т.е. оборудовать скважины глубинными насосами
(при глубинах залегания пласта приблизительно до 2500 м) или газлифтными подъемниками (при более значительных глубинах).
Обобщая все изложенное по проблеме разработки газоконденсатных и нефтегазоконденсатных месторождений с нагнетанием воды в пласт или с регулированием фронта ее распространения по пласту,
можно сделать следующие выводы.
Искусственное заводнение пласта может быть применено в газоконденсатных залежах, в том числе с нефтяными оторочками,
при глубинах приблизительно до 2500 м, и в коллекторах с проницаемостью не ниже 10~14 м2 . Наиболее изученным и оправдавшим применение на реальных объектах является барьерное заводнение на газонефтяном контакте, а также в зоне нефтяной оторочки.
Как при разработке с искусственным заводнением, так и при регулировании продвижения фронта воды часть скважин на месторождении должна быть переведена на отбор воды или водогазовой смеси, в том числе на форсированном режиме, что позволит управлять процессом продвижения воды по пласту, обеспечить более полный его охват и снизить потери углеводородов из-за защемления.
Увеличить конечную газоконденсатоотдачу пласта после его искусственного или естественного заводнения возможно, разрабатывая пласт на истощение путем отбора водогазовой смеси.
Очевидно, при разработке залежи с отбором больших объемов воды важно экологически грамотно утилизировать добываемую воду, например использовать ее для закачки в эксплуатируемые нефтяные или отработанные газовые пласты.
Конец цитаты.
Цитата
http://www.mining-enc.ru/r/razrabotka-gazokondensatnyx-mestorozhdenijРазработка газоконденсатного месторождения — комплекс работ по извлечению газоконденсатной смеси из пласта-коллектора.
Осуществляется на газоконденсатном месторождении посредством реализации определённой системы разработки —
размещением на площади газоносности и структуре
необходимого числа эксплуатационных, нагнетательных, наблюдательных и пьезометрических скважин, соблюдением порядка ввода их в эксплуатацию и поддержанием необходимых технологических режимов эксплуатации скважин. Добываемая газоконденсатная смесь на поверхности подвергается промысловой обработке. Для этого применяется соответствующая система обустройства газоконденсатного промысла, включающая поверхностное оборудование для сбора газоконденсатной смеси, разделения её на газ и конденсат, отделения сопутствующих ценных компонентов, очистки, осушки, компримирования газа и подачи его потребителю или в магистральный газопровод, а также первичной переработки конденсата (разделение на фракции) и транспортирования его на конденсатный завод.
Под рациональной системой разработки газовых месторождений и обустройства промысла понимается система, при которой обеспечивается заданная добыча газа, конденсата и сопутствующих ценных компонентов с оптимальными технико-экономическими показателями и коэффициентом газо- и конденсатоотдачи при соблюдении условий охраны недр и окружающей среды.
Разработка газовых месторождений характеризуется следующими основными технологическими и технико-экономическими показателями: зависимостями изменения во времени среднего пластового давления, забойных и устьевых давлений по скважинам, необходимого числа скважин и мощности компрессорных станций,
объёмов поступающей в залежь пластовой воды, технологическими параметрами системы обустройства промысла, а также необходимыми уровнями капитальных вложений и эксплуатационных расходов, себестоимостью добычи газа и конденсата. Изменение этих показателей в значительной мере зависит от режима газоконденсатной залежи.
Конец цитаты.
Цитата
https://revolution.allbest.ru/geology/00512923_0.html1. Закиров С.Н. Разработка газовых, и газоконденсатных и нефтегазоконденсатных месторождений. - М.: Струна, 1998.
2. Ширковский А.И. Разработка и эксплуатация газовых и газоконденсатных месторождений. - М.: Недра, 1987.
3. Коротаев Ю.Н., Ширковский А.И. Добыча, транспорт и подземное хранение газа. - М.: Недра, 1984.
4. Лалазарян Н.В. Нурбекова К.С. Разработка и эксплуатация газовых и газоконденсатных месторождений. Электронный учебник, Алматы: КазНТУ, 2002.
5. Вяхирев Р.И. и др. Разработка и эксплуатация газовых и газоконденсатных месторождений - М.: Недра, 2002.
6. Мирзаджанзаде А.Х. и др. Технология добычи природных газов. - М.: Недра, 1987.
7. Гвоздев В.П., Гриценко А.И., Корнилов А.Е. Эксплуатация газовых и газоконденсатных месторождений. Справочное пособие. - М.: Недра, 1989.
8. Кондрат Р.М. Газоконденсатоотдача пластов. - М.: Недра, 1992.
9. Маргулов Р.Д., Вяхирев Р.И., Леонтьев И.А., Гриценко А.И. Разработка месторождений со сложным составом газа - М.: Недра, 1988.
10. Гриценко А.И., Алиев З.С., Ермилов О.М., Ремизов В.В., Зотов Г.А., Руководство по исследованию скважин. - М.: Наука, 1995.
11. Джиембаева К.И., Лалазарян Н.В. Сбор и подготовка скважинной продукции на нефтяных месторождениях. Учебное пособие для ВУЗов. - Алматы: 2005.
Конец цитаты.