Добрый день
О генезисе зон интенсивной степени деформации...
Формула E=mc2 отражает режим работы объектов и всей системы космического пространства, который характеризуется как автоколебательный. Циклы работы системы, определяются особенностями источника возмущения, который также является системой. Длина волны, генерируемая системой, определяется ее структурой. Пространство космоса, таким образом, неоднородно и разделено на области обладающие разным энергетическим потенциалом.
Существование данного закона (формула 1), определяется физической сущностью, которая характеризует пространство, как неоднородное и асимметричное. Энергия может переходить в массу вещества и наоборот, - масса вещества может переходить в энергию. Процесс сопровождается волной, которая переносит энергию и вещество, при этом процессе, происходит структурирование пространства.
Отметим, что еще в период разделения объекта зонами деформаций на блоки, начинается процесс тектонического движения вещества и его дифференциация, а точнее, происходит процесс углубления дифференциации вещества, его разогрев и дегазация.
Течение магмы приводит к образованию локальных магнитных полей.
Система Солнца располагается в плоской подсистеме Галактики. Диск подсистемы разделяется на зоны, спиралевидными рукавами. Система Солнца располагается в рукаве обладающем мощным энергетическим потенциалом, по сравнению со смежными зонами.
Система Солнца располагается в области орбиты Галактики, где угловые скорости достигают своих максимальных значений — 750 км/сек. Образование Земли генетически связано с системой Солнца как одного из объектов (структурного элемента) Галактики.
Силы гравитации направлены к центру системы. В связи с чем планета имеет форму, близкую к форме шара (эллипсоид Красовского).
В.А. Ермаков отмечает, что «земная кора магматического происхождения, сформированная к середине протерозоя, - наглядное свидетельство огромной потери тепла, легколетучих и легкоплавких компонентов протомантии. К концу периода (4,4 — 1,6 млр. лет) было образовано 85-95% континентальной коры. Наиболее древние офиолиты имеют возраст менее 2,8 млр.лет. Образование древнейших пород коры (протосиаль - серые гнейсы) произошло в первые 500 млн. лет»
О.А. Богатиков отмечает, что «в кислых породах имеются первичные до метаморфические цирконы, в то время, как породы основного состава содержат только метаморфические цирконы.» (1985).
Метапороды основного и ультраосновного состава имеют возраст архей - протерозой. Первые офиолиты имеют возраст менее 2,7 млр. лет. Фиксируется повсеместное налегание пород зеленоакаменых поясов на комплексы сиалической коры. «В архее скорость осевого вращения была менее 10 часов» (М.З. Глуховский, В.Н. Жарков, Ю.Н. Авсюк), «...в связи с чем в экваториальных широтах (±35º), под воздействием центробежных сил в режиме мантийных плюмов, происходило зарождение коры сиалического состава (М.З. Глуховский), а также формирование зеленокаменных поясов первого поколения - Барбертон и Пилбара (3,4-3,2 млр. лет)» (Kolger, 2006).[8]
Зеленокаменные пояса второго поколения (3-2,7млр.лет) формировались в режиме быстрого осевого вращения. Процесс сопровождался деструкцией коры.
В протерозое (2,5-1,9 млр. лет) происходят процессы деформации коры, сопровождающиеся внутрикоровым и мантийным магматизмом и высокотемпературным метаморфизмом. К середине протерозоя сформировалась кора магматического происхождения (В.А. Ермаков). [8]
Летучая компонента (древний 3,6 млр. лет) нижней мантии представляет собой набор элементов, для мантийных базальтовых выплавок, по А.Ф. Грачеву: гелий, водород, углекислый газ и метан.
Очаговый резервуар: резервуар в котором накапливаются флюиды и газы, обогащаются гелием, водородом, метаном, радоном, сероводородом.
Таким образом, в начальный период развития поверхность планеты подвергалась сильнейшему разогреву, в результате чего начала формироваться газово - водная оболочка. В этот период начинает формироваться кора и подстилающая ее литосфера, имеющая полиастеносферное строение в областях высокой степени проницаемости.
М.М. Довбич, указывает, что «закономерности геотектонических процессов имеют сложный характер (вид), хорошо объясняемый особенностями дрейфа оси вращения в теле Земли. Отмечается влияние вариаций ротационного режима на особенности планетарной сейсмичности. Им показано, что вращательные явления будут приводить к вариациям ротационного режима Земли - изменению скорости вращения и положения оси вращения в теле планеты. Именно эти процессы приводят к нарушению равновесного состояния планеты и возникновению механических напряжений в ее тектоносфере».
Сопоставление химических составов Солнца, Земли, Луны выявило функциональную зависимость распределения химических элементов в Солнечной системе [по В.Н. Ларину], от их потенциалов ионизации, что позволило определить исходный состав Земли. Планета изначально была сложена водородистыми соединениями - гидридами. Водород являлся основным элементом (60%). Эволюция изначально гидридной Земли сопровождалась дегазацией водорода, и существенным расширением планеты. Именно эти два фактора определяли специфику тектогенеза и глубинную геодинамику на протяжении всей геологической истории и они же обусловили изменение характера металлогении во времени. Выделяется литосфера (0-150 км) состав-силикаты и окислы; металлосфера (150-2900 км) состав - сплавы и соединения на основе кремния, магния, железа; ядро внешнее (2900 км-5000 км) состав - металлы с раствором водорода; ядро внутреннее (5000 км - 6371 км) состав, - гидриды металлов (водородосодержащий минерал рингвудит). Изначально литосфера отсутствовала, ее формирование связывается с дегазацией водорода.
Система Солнца располагается в плоской подсистеме Галактики. Диск подсистемы разделяется на зоны, спиралевидными рукавами. Система Солнца располагается в рукаве обладающем мощным энергетическим потенциалом, по сравнению со смежными зонами.
Система Солнца располагается в области орбиты Галактики, где угловые скорости достигают своих максимальных значений — 750 км/сек. Образование Земли генетически связано с системой Солнца как одного из объектов (структурного элемента) Галактики.
Силы гравитации направлены к центру системы. В связи с чем планета имеет форму, близкую к форме шара (эллипсоид Красовского).
Вращение Земли вокруг оси неизбежно влечет за собой (с позиции механики), появление эффекта спирали, в результате которого, поле напряжений должно регулироваться как элементами сферической (шара), так и винтовой симметрии. Таким образом, даже для заведомо изотропной сферы, винтовая симметрия наведет анизотропию, чем может быть объяснено не только существование гравитационных максимумов и минимумов Земли и на Луне (максоны), но и явные нарушения симметрии шара, типичные для Земли.
В результате этого процесса, первичный план деформации изменяется. углубляются процессы дифференциации вещества, возникают четкие границы разделов по латерали и радиали. Образовавшиеся гравитационные минимумы и максимумы (максоны), способствуют активизации тектонической миграции вещества, как по латерали, так и по вертикали. С данным процессом связывается изменение реологических свойств вещества. Течение магмы приводит к образованию глобального, регионального, локального магнитных полей.
Напряженное состояние является важнейшей характеристикой геологической среды, определяющей развитие геопроцессов. Анализ этой характеристики позволяет дать ответ о роли космогенических факторов в колебательном режиме эволюции планеты.
Поля напряжения, всех уровней иерархии, взаимодействуя, приводят к формированию глобального поля напряжения, разгрузка которого выразилась заложением сети разломов и сети глобальной трещиноватости.
Б.Б. Таль-Вирский [1972] показал, что «значения теплового потока в Средней Азии увеличиваются с приближением к тектонически активным областям и что, геоизотермы нередко обладают обращенным рельефом относительно стратоповерхностей». На этом основании он пришел к выводу, что ни поверхность фундамента, ни поверхность «Мохо» не могут приниматься за изотермические. Это свидетельствует о том, что тепловые потоки распространяются вдоль направляющих структур, которыми являются разломы
Структура геологического пространства системы Земли формируется под воздействием гравитационных и иных полей .(Солнца и Галактики). Силовое поле Галактики, имеющее волновой характер, и силовое поле Солнца воздействуя на систему Земли, заставляют ее орбитально вращаться вокруг Солнца и центра Галактики, при этом совершается вращательное движение Земли вокруг своей оси. Кроме этого система совершает колебательные квазисинусоидальные движения относительно Солнца и Луны, а также в плоскости Галактики, приближаясь и удаляясь от центра Галактики вместе с Солнцем.
Такие сложные ротационно-колебательно-орбитальные движения Земли свидетельствуют о волновом характере силового поля Галактики и Солнца, в котором развивается система Земли в автоколебательно-ротационно-плюмовом режиме.
Глубина залегания корней континентов фиксирует области нагнетания масс мантийного вещества. Такие области характеризуются высокой степенью проницаемости и глубокой степенью дифференциации вещества, большим количеством разнообразных петрохимических формаций, располагающихся зонально, как по латерали, так и по вертикали.
Регулирующий механизм, в виде закономерно располагающихся СЭЦ, необходим в связи с тем, что процесс формирования системы Земли постоянно сопровождался её деформацией. Изменения параметров P-T в тектоносфере, ведет к изменению режима работы СЭЦ. Режим работы стационарных энергетических центров определяется факторами изменяющими термодинамические условия вмещающей среды. Под воздействием стационарных энергетических центров генезис которых связывается с взаимодействующими полями напряжения формируется тектоносфера системы Земли.
Устойчивость процессов регионального структурообразования, как общепланетарное качество системы Земли, вместе с периодичностью и дискретностью тех же региональных структур, свидетельствуют о том, что главные свойства геологических структур, всех уровней иерархии, отражают единство общепланетарного созидающего их механизма. Таким механизмом является автоколебательная система Земли, генерирующая волны напряжений различной длины, которые определяются особенностями ее строения [3].
6) «Анализ истории развития тектонических движений и деформаций, указывает на устойчивую унаследованость их характера от древнейших этапов развития литосферы, проявляющуюся в большей степени, в пространственном расположении структурных элементов.» [Е.А. Хаин].
Размещение структурных элементов, в пространстве системы Земли, носит строго закономерный характер, в связи с чем, она не теряет в пространстве космоса, своего динамического равновесия.
Процесс магмаобразования происходил в антидромной последовательности.
"...Более легкоплавкое вещество лейкосомы легче перемещается при высокотемпературном (особенно в водном) амфиболитовом метаморфизме, создавая тем самым впечатление большей древности меланосомы." (О.А. Богатиков).
Этот факт указывает на то, что «ядерная» область системы была представлена легким веществом, в результате чего начался процесс плюмообразования.
Под воздействием флюидодинамических процессов автоколебательной системы Земли, произошло формирование земной коры и подстилающей ее литосферы и мантии. Формирование минерального сырья, как магматического так и осадочного генезиса, также произошло под воздействием флюидодинамических процессов.
Главные факторы формирования тектонических нарушений:
разделение объектов пространства геологического пространства зоной интенсивной степени деформации на области с высокой и низкой степенью деформации происходит вне зависимости от формы объекта и способа его движения, а в результате воздействия сил гравитации;
в период вращения-под воздействием центробежных сил вращающейся системы;
глобальное, региональное и локальное, поля напряжений, разгрузка которых привела к образованию разломов;
волновой механизм энергопередачи, постоянно действующий во времени и пространстве.
В силу того, что разломы являются первичными структурами, они располагаются линейно и имеют сквозной характер по отношению к другим тектоническим структурам, что позволяет успешно применять различные способы геометризации для целей прогнозирования.
Блоки имеют характерное ядерно-зональное строение, генезис их связан с процессами рифтогенеза и деформирующим верхнюю тектоносферу восходящим энергомассопотоком. На периферии блоков располагаются впадины.
Структуры наложенной активизации образованы в результате общего процесса происходящего в мантии имеющего волновой характер (гармоники общеземной стоячей волны). Тепловая и химическая энергия в виде глубинных потоков поднимается по проницаемым зонам разломов, данный процесс сопровождается деформацией тектоносферы. Необходимо рассматривать отраженную и автономную активизации как частные проявления общего процесса наложенной активизации, источник энергии которой располагается в мантии, литосфере, земной коре.
Под воздействием флюидной адвекции и процессов зонного плавления, автоколебательной системы Земли, произошло формирование земной коры и подстилающей ее литосферы и мантии. Формирование минерального сырья, как магматического так и осадочного генезиса, также произошло под воздействием флюидодинамических процессов.
Геодинамические процессы, связанные с эволюционным развитием геоида вращения автоколебательной системы Земли, проявились заложением зон спрединга и зон субдукции, а в целом, заложением унаследовано развивающейся регматической сети разломов, разбивающих геологическое пространство системы, по четырем основным направлениям и располагающихся закономерно.
Зоны спрединга развивались в периоды деструкции коры, они характерны для нижнего структурного этажа (особенно в до рифейское время, эпоху развития кратонов). На материках, по зонам спрединга, развились срединные массивы, геосинклинали и островные дуги.
Зоны субдукции, надсубдукционные срединные массивы и геосинклинали, интенсивно начали развиваться в предрифейское время, в связи с формированием гранито-метаморфического слоя (архей — протерозой)и увеличением скорости вращения системы Земли.
Процессы происходящие в системе связываются с динамикой вращения геоида, на что указывает пространственное расположение корней континентов, развитие магмагенеза области экватора и восточных областей Азии, и других областей Северного полушария. Степень дифференциации вещества, отражается глобальными гравитационными и магнитными аномалиями.
Вся основная сейсмическая активность сконцентрирована на границах континентов. Выделяются два узких региона повышенных скоростей, протянувшиеся на многие тысячи километров вдоль Северной и частично Южной Америки, а также между Европой и Индонезией через южную Азию. Выделяются четыре региона пониженных скоростей:два- в пределах Тихого океана, один-в Атлантике и один, самый крупный, под Африкой (глубина 1350 км). Такая структура сохраняется и на других глубинах в мантии Земли (Явелов Б.) [14].
Одновременное проявление (по В.В. Белоусову,1975) на поверхности материков различных эндогенных режимов, указывает на гетерогенность теплового поля Земли: в одно и то же время тепловые потоки в разных местах разнятся по своей интенсивности, следовательно, тепловые потоки меняют свою интенсивность как в пространстве, так и во времени, [2] а также, указывает на существование единого управляющего механизма, под воздействием которого эволюционно развивается система и объекты, в ее геологическом пространстве.
Опускаясь в глубь и нагреваясь, вещество мигрирует в сторону низких значений (Р-Т), то-есть, под континентальную область, которая характеризуется, как область высокой степени проницаемости (до губин подошвы ижней мантии — 670 км.
При формировании коры материков в процесс дифференциации вовлечена мантия на всю ее мощность. Так, расчеты сделанные А. Б. Роновым и Д.А. Ярошевским показывают, что «для литофильных элементов, в дифференциацию должны быть вовлечены вещества с глубины: для кремния 60 км; алюминия 140 км; кальция 50 км; натрия 180 км; для калия 1300 км» [2].
Потоки энергии под материками имеют относительно низкие значения (Р-Т), флюиды насыщены кремнием. щелочами, летучими компонентами, а также редкоземельными элементами и радиоактивными элементами, то-есть, выносятся реагенты способные формировать кору материкового типа.
От степени проницаемости коры зависит степень дифференциации вещества, поднимающегося из глубоких мантийных сфер, а также и мощности верхних тектоносфер и разнообразие формаций пород, слагающих кору и подстилающую ее литосферу.
Парагенетическая связь между степенью проницаемости коры, мощностями слоев и дифференциированностью вещества, ярко выражена в областях материков и океанов, где фактор (Р-Т) зависит от степени проницаемости коры, что отразилось на развитии мощности астеносферного слоя, в области океана он равен 400 км., в области материков от 0-50-120 км и редко до 220 км.
Каждый из больших поясов распадается на части, вытянутые в направлении протяжения пояса, в которых процессы геосинклинального развития закончились в разное время. Первичными структурами в подвижных поясах. являются кратоны и срединные массивы. Заложение поясов происходило на кратонах, а затем и на океанической коре. Системы трогов возникали вдоль зон систем глубинных разломов, которые образовывались в результате процессов деструкции (протерозой, ранний палеозой). Прерывистость поясов объясняется существованием древних (архей) срединных массивов или не переработанных геосинклинальным режимом структур кратонов (Тарим, Скифская плита). Кратоны определяют общий план деформации и маркируют зоны восходящих мантийных энергомассапотоков, которые формируют тектоносферу посредством физико-химических деформаций. Подвижные пояса повсюду окаймляют древние платформы и щиты.
В до срединно-массивно-геосинклинальный период развития, широкое распространение имели зоны спрединга, которые генетически связаны с формированием геоида. Частота заложения спердинговых структур меридионального и широтного простирания, интенсивность процессов деформации стремится к максимуму в экваториальной области. Широтно-меридиональный план деформаций проявлен в большей мере в до рифейский (до байкальский ) этап развития системы Земли.
С уважением В.Н. Устьянцев