Гидрид углерода в микроволновкеhttps://youtu.be/7A3e4oETHTI Eleanor Binner, Edward Lester, Sam Kingman, Chris Dodds, John Robinson, Tao Wu, Peter Wardle, Jonathan P. Mathews
A Review of Microwave Coal Processing // Journal of Microwave Power and Electromagnetic Energy, 48 (1), 2014, pp. 35-60.
https://www.tandfonline.com/doi/pdf/10.1080/08327823.2014.11689870https://yadi.sk/i/brOyU3Bsc0LRhAАннотация В данной статье рассматривается применение микроволновой энергии в переработке угля и
использование. Он объединяет все опубликованные работы по микроволновой обработке
уголь. Большая часть работ была выполнена в лабораторных масштабах, хотя и несколько процессов
сделали это в пилотном или даже промышленном масштабе. Процессы с более непосредственным
определены перспективы расширения масштабов, а также те, которые требуют дальнейшего лабораторного масштабирования
эксперименты по установлению того, следует ли проводить СВЧ-обработку на большем
масштаб. Важность диэлектрических свойств обрабатываемых материалов заключается в следующем
подчеркивается, а также причины, обусловливающие необходимость междисциплинарного подхода к
объяснены конструкция и принцип действия электромагнитных экспериментов. Микроволновая печь уголь
переработка является разнообразной областью, которая имеет потенциал, чтобы помочь в модернизации угля, очистки
и измельчение, тем самым повышая эффективность и снижая вредные выбросы угля
использование. Другие перспективные направления исследований включают исследование микроволновой обработки
для коксования, сжижения, повышения текучести в угольных пластах и характеристики угля.
В заключение в документе обсуждаются препятствия для расширения масштабов этих процессов.
Механизмы микроволнового нагрева При наличии микроволновки
радиацию, материалы можно расклассифицировать в
одна из трех групп: изоляторы, проводники
и поглотители [Chen et al., 1984]. Наиболее
углеродные материалы являются поглотителями
микроволн, в зависимости от структуры
состав. Изоляционные материалы, такие как кварц
или PTFE микроволны прозрачные, пока
проводники, такие как алюминий или нержавеющая сталь
сталь может отражать микроволны (когда они
присутствует в виде листов или блоков). Материалы, которые
может поглощать высокочастотное электромагнитное
волны известны как Диэлектрики и могут нагреваться
по-разному [Мередит, 1998; Уиттакер,
2005а; Скэйф, 1989]. В промышленном высокочастотном диапазоне нагрева (107-3 x 109
Герц),
что включает радиочастоту и
микроволновые печи, преобладающее отопление
механизмы дипольной поляризации,
проводимость и межфазная поляризация
[Метаксаса и Мередит, 1983]. Этот
механизм кондукции вытекает из наличия
ограниченный свободный заряд в матрице материала,
как в графите, и обычно существенно
постоянная на низких микроволновых частотах,
отпадая по мере увеличения частоты до
около 100 МГц [Мередит, 1998]. Нагрузка
ведет себя как плохой электрический проводник, и
движение свободного заряда приводит к
отопление за счет электрического сопротивления [Скэйф,
1989]. Механизм дипольной поляризации
возникает из молекул внутри диэлектрика
проявление дипольного момента. В присутствии
внешнего приложенного электрического поля, эти
диполи выстраиваются в направлении
поле [Метаксаса и Мередит, 1983;
Уиттакер, 2005в]. Как переменный электрический
поле (в результате применения
микроволны) изменяется, диполи колеблются,
производить увеличение внутренней энергии
диэлектрик. Эта внутренняя энергия может быть потеряна
как трение, таким образом нагревая материал [Metaxas
и Мередит, 1983]. Дипольная поляризация
частота зависимая и обычно доминирует в
микроволновая печь отопления выше 1 ГГц
[Метаксаса и Мередит, 1983]. Межфазный
(или Максвелл-Вагнер) поляризация относится к
накопление заряженных частиц на интерфейсах
в гетерогенных диэлектриках. Считается, что
важно при нагреве неоднородных
диэлектрики на частотах менее 5 х 107
Герц
[Метаксаса и Мередит, 1983].
ВЫВОДЫМикроволновые печи были оценены
чтобы помочь с добычей, обогащением,
сушка, освобождение минералов, сжижение,
улучшенная измельчаемость, коксование и аналитика
методы. Некоторые из этих процессов,
в частности изготовление кокса, было показано к
работать в лабораторных условиях, а также обеспечивать
явные преимущества перед обычными
отопление. Эти процессы были
определены и рекомендации на будущее
развитие было дано. Другой
процессы нуждаются в дальнейшем
работа по выяснению механизмов нагрева
и демонстрируют ли микроволны
действительно предлагал потенциальные преимущества над
другие процессы нагрева. В общем, то
успех микроволновых систем в промышленности
прошел тщательное измерение
диэлектрических свойств мишени
материалы, глубокое понимание
механизмы нагрева, а также конструкция
соотвествующая полость для того чтобы обеспечить оптимизированный
доставка микроволновых печей. Мы заключаем
что пока есть некоторые интересные
приложения с научной точки зрения,
очень сильное ценностное предложение в сочетании
с организацией с высоким принятием
риска потребуется разработать высокий
силовое микроволновое оборудование способно работать
эффективно в грязных, суровых условиях.